General Specifications

GS 32Q03B10-31E

Model CFS1300 Safety Control Functions Package (for SSC60□ and Vnet/IP) Model CFS1350 Node Expansion Package (for SSC60□ and Vnet/IP)

[Release 3]

GENERAL

Safety Control Functions Package is a software package that monitors a plant to ensure it is operating safely. The package also performs preset safety operations in response to requests for safety control.

Application capacity of CFS1300 Safety Control Functions mounted on Safety Control Unit "SSC60 \square " is larger than that of CFS1100 Safety Control Functions mounted on Safety Control Unit "SSC50 \square ". By adding CFS1350 Node Expansion Package and mounting SEC402 ESB Bus Coupler Modules on SSC60 \square Safety Control Unit, up to 13 SNB10D Safety Node Units can be connected extending I/O points. By adding CFS1355 Node Expansion Package for SCS Simulator, number of node units and application capacity can be expanded in the virtual test environment where a Safety Control Station is not connected.

■ FUNCTIONAL SPECIFICATIONS

The following describes the configuration and functions of the package:

• Configuration of CFS1300 Safety Control Functions Package

The CFS1300 Safety Control Functions Package operates on Safety Control Stations (SCSs). The functions of the package can be divided into two groups: the application logic execution function group and the external connection function group. The application logic execution function group executes safety applications. The external connection function group performs communications with non-SCS equipment. For example, this function group integrates the CENTUM VP or CENTUM CS 3000 (hereinafter, "VP/CS 3000") with the package.

F01E.ai

Application Logic Execution Functions

This function group is the main part of the package that monitors the plant to ensure it is operating safely, and performs preset safety operations if any abnormalities occur. This group is composed of the following functions:

- Application logic execution function
- Process data I/O function
- · Communication data I/O function (Subsystem communication function)
- · Inter-SCS safety communications function
- SCS link transmission function
- Self-diagnosis function

External Communication Functions

This function group, which performs communications between the application logic execution functions and non-SCS equipment, is composed of the following functions:

- CENTUM VP/CS 3000 integration function
- Modbus connection function
- Sequence-of-events recorder (SOER) function
- Diagnosis information collection function
- PRM-supported HART on-demand communication

• Application Logic Execution Functions

The application logic execution function, process data I/O function, inter-SCS safety communication functions and SCS link transmission function are given below.

Application Logic Execution Function

This function can be created by using the Function Block Diagram (FBD), the Ladder Diagram (LD) or Structured Text (ST), all of which are compliant with the IEC 61131-3. The tables below list the functions and function blocks used in the FBD. Some elements from LD can also be used.

Function Details ABS Gives the absolute (positive) value of a real value SQRT Calculates the square root of a real value +ADD +, meaning "addition" × MUL ×, meaning "multiplication" -SUB -, meaning "subtraction" / DIV /, meaning "division" SHL Make the bits of an integer shift to the left. Shift is made on 32 bits. Zero is used to replace lowest bit. SHR Make the bits of an integer shift to the right. Shift is made on 32 bits. Highest bit is copied at each shift. ROL Make the bits of an integer rotate to the left. Rotation is made on 32 bits. ROR Make the bits of an integer rotate to the right. Rotation is made on 32 bits. AND AND OR OR XOR Exclusive disjunction (exclusive OR) NOT Negation SEL Selects one of two input values (INTEGER) SEL_R Selects one of two input values (REAL) SEL_T Selects one of two input values (TIME) MAX Selects the larger of two input values (INTEGER) MIN Selects the smaller of two input values (INTEGER) LIMIT Limits the range of the input values to output (INTEGER) MUX4 Selects one of four input values (INTEGER) MUX8 Selects one of eight input values (INTEGER) MUXBOOL4 Selects one of four input values (BOOL) MUXBOOL8 Selects one of eight input values (BOOL) MUXREAL4 Selects one of four input values (REAL) MUXREAL8 Selects one of eight input values (REAL) GT >, meaning "greater than" GF >=, meaning "greater than or equal to" EQ =, meaning "equal" LE <=, meaning "less than or equal to" LT <, meaning "less than" NE ≠, meaning "unequal" SCALER Converts a 0-100 % range of input values into a normalized range for outputting 1GAIN Assignment

Table Functions (FU) (1/2)

Table Functions (FU) (2/2)

Function	Details
IB_TO_V	Converts IO_BOOL-type input to data value
IB_TO_S	Converts IO_BOOL-type input to data status
IR_TO_V	Converts IO_REAL-type input to data value
IR_TO_S	Converts IO_REAL-type input to data status

Table Interference-free (*1) Functions (FU)

Function	Details
ANY_TO_BOOL	Converts to BOOL-type
ANY_TO_DINT	Converts to INTEGER-type
ANY_TO_REAL	Converts to REAL-type
ANY_TO_TIME	Converts to TIME-type
POW	Performs power calculation
POWE	Performs calculation of exponential function with base e
ACOS	Calculates the Arc cosine of a real value
ASIN	Calculates the Arc sine of a real value
ATAN	Calculates the Arc tangent of a real value
COS	Calculates the Cosine of a real value
SIN	Calculates the Sine of a real value
TAN	Calculates the Tangent of a real value
LOG	Calculates the Common logarithm of a real value
LOGE	Calculates the Natural logarithm of a real value
MOD	Calculates the Modulo of an integer value

*1: Functions not affecting the safety loop

Table Function Blocks (FB) (1/2)

Function block	Details
SR	Set dominant bistable
RS	Reset dominant bistable
R_TRIG	Detects a rising edge
F_TRIG	Detects a falling edge
CTU	Count up counter
CTD	Count down counter
CTUD	Count up/down counter
TP	Pulse timer which outputs pulses for a specified duration after rising edge detection
TON	On-delay timer
TOF	Off-delay timer
REPEATTIMER	Alternates TRUE and FALSE outputs at specified intervals
FILTER	First-order lag filter
FILTER_S	First-order lag filter with data status analysis capability
ANLG1002D	1oo2D analog voter
ANLGVOTER	3-input analog voter (IO_REAL)
BOOLVOTER	3-input BOOL voter (IO_BOOL)
ANLG_S(*1)	Outputs high/low alarm with scale conversion (with data status input)
ANLGI(*1)	Outputs high/low alarm with scale conversion
VEL(*1)	Detects the velocity limit exceeded

*1: When the CENTUM VP/CS 3000 Integration Engineering Package is used in conjunction with this package, the HIS of VP/ CS 3000 can perform operations and monitoring.

Table	Function	Blocks	(FB)	(2/2)
-------	----------	--------	------	-------

Function block	Details	
SYS_STAT	Manages the SCS status	
SYS_FORCE	Manages forcing	
SYS_DIAG	Outputs diagnosis information	
SYS_SECURE	Manages Security level	
SYS_SEC_CTL	Protects Security level	
SYS_IOALLST	Detects fault in all I/O channels	
SYS_NODEST	Detects fault in all I/O channels in node	
SYS_OUTST	Detects fault in output module channels (for 8 channels)	
SYS_OUTST16	Detects fault in output module channels (for 16 channels)	
SYS_INST	Detects fault in input module channels	
SYS_CHST	Detects fault in channels	
SYS_CERR	Indicates computation errors	
SYS_SCANEXT	Indicates the extension of scan period	
SYS_OVR	Manages override function blocks	
SYS_PSWD	Manages password function blocks	
SYS_OUTEN	Indicates Output module output status	
SYS_ALLSD	Shuts down Station output	
SYS_IOSD	Shuts down Module output	
SYS_FORCE_BD	Manages forcing of inter-SCS safety communication data	
SYS_FORCE_LT	Manages forcing of SCS Link Transmission	
SYS_LTSTS	Indicates SCS Link Transmission reception status	
GOV_B	Grouping overrides from HIS (BOOL)	
GOV_IB	Grouping overrides from HIS (IO_BOOL)	
OVR_B(*1)	Overrides from HIS (BOOL)	
OVR_I(*1)	Overrides from HIS (INTEGER)	
OVR_R(*1)	Overrides from HIS (REAL)	
OVR_IB(*1)	Overrides from HIS (IO_BOOL)	
OVR_IR(*1)	Overrides from HIS (IO_REAL)	
PASSWD(*1)	Manipulates BOOL-type data using password from HIS	
MOB_11(*1)	Data manual operation with two-position answerback (BOOL)	
MOB_21(*1)	Data manual operation with three-position answerback (BOOL)	
MOB_RS(*1)	Auto-reset data manual operation (BOOL)	
MOA(*1)	Analog-type data manual operation	
CONS_B	Receives data on consumer side for inter-SCS safety communication (BOOL)	
CONS_I	Receives data on consumer side for inter-SCS safety communication (INTEGER)	
CONS_R	Receives data on consumer side for inter-SCS safety communication(REAL)	
PROD_B	Transmits data on producer side for inter-SCS safety communication (BOOL)	
PROD_I	Transmits data on producer side for inter-SCS safety communication (INTEGER)	
PROD_R	Transmits data on producer side for inter-SCS safety communication (REAL)	
B_TO_IB	Converts data values and status to IO_BOOL-type outputs	
R_TO_IR	Converts data values and status to IO_REAL-type outputs	
LTRCV	Receives Safety Link Transmission data	
LTSND	Sends Link Transmission data	
ANN_FUP (*1)	Detects the first-up alarm and transmits the annunciator message	
FUP_RST	Resets the first-up alarm annunciator	

*1: When the CENTUM VP/CS 3000 Integration Engineering Package is used in conjunction with this package, the HIS of VP/ CS 3000 can perform operations and monitoring.

Function block	Details
ANN(*2)	Transmits annunciator message
SYS_SCAN	Outputs application logic execution time and percentage of CPU idle time
SYS_IOMDSP	Outputs the IOM status
SYS_NODEINF	Outputs node status
SYS_ESBINF	Outputs ESB bus status
SYS_NETST	Outputs Control bus status
SYS_ALRDSP	Outputs status of subsystem communication modules
SYS_ALARM	Outputs alarm transmission status
SYS_TIME	Outputs SCS clock information
SYS_FORCE_SC	Manages forcing of subsystem communication data
SYS_STAT_SC	Indicates output enable operation in subsystem communication
SOE_B	BOOL-type data SOER
SOE_I	INTEGER-type data SOER
SOE_R	REAL-type data SOER
ECW_B(*2)	Sets data of a BOOL-type variable from an external device
ECW_I(*2)	Sets data of a INTEGER-type variable from an external device
ECW_R(*2)	Sets data of a REAL-type variable from an external device
AVERAGE	Calculates the average of a specified duration
LIM_ALRM	Hysteresis on a real value for high and low limits
SCI_B(*2)	Input from subsystem (BOOL)
SCI_I(*2)	Input from subsystem (INTEGER)
SCI_R(*2)	Input from subsystem (REAL)
SCO_B(*2)	Output to subsystem (BOOL)
SCO_I(*2)	Output to subsystem (INTEGER)
SCO_R(*2)	Output to subsystem (REAL)
LTFCS	Receives Interference-free Link Transmission data
SYS SETTIME	Sets the SCS time

Table Interference-free (*1) Function Blocks (FB)

*1: *2:

Functions not affecting the safety loop When the CENTUM VP/CS 3000 Integration Engineering Package is used in conjunction with this package, the HIS of VP/CS 3000 can perform operations and monitoring.

Table Ladder Elements

Ladder	Details
Direct Contact	Direct contact
Inverted Contact	Inverted contact
Contact with Rising Edge Detection	Contact with rising edge detection
Contact with Falling Edge Detection	Contact with falling edge detection
Direct Coil	Direct coil
Inverted Coil	Inverted coil
SET Coil	SET coil
RESET Coil	RESET coil
Coil with Rising Edge Detection	Coil with rising edge detection
Coil with Falling Edge Detection	Coil with falling edge detection

Scan period of Application Logic Execution Function

50 milliseconds – 1 second (in multiples of 10 milliseconds within this range)

Process Data I/O Function

For process data I/O, analog I/O modules and digital I/O modules are used. The table below lists I/O modules that SCSs can employ.

Model	Module Name
SAI143	Analog input module (4 to 20 mA, 16-channel, module isolation)
SAV144	Analog input module (1 to 5 V/1 to 10 V, 16-channel, module isolation)
SAT145	TC/mV input module (16-channel, isolated channels)
SAR145	RTD input module (16-channel, isolated channels)
SAI533	Analog output module (4 to 20 mA, 8-channel, module isolation)
SDV144	Digital input module (16-channel, dry contact, module isolation)
SDV521	Digital output module (4-channel, 24 V DC/2 A, module isolation)
SDV526	Digital output module (4-channel, 100-120 V AC, module isolation)
SDV531	Digital output module (8-channel, 24 V DC, module isolation)
SDV53A	Digital output module (8-channel, 48 V DC, module isolation)
SDV541	Digital output module (16-channel, 24 V DC, module isolation)

Table I/O Modules

Table Interference-free (*1) Communication Modules

Model	Module Name
ALR111	Serial communication module (RS-232C, 2-port)
ALR121	Serial communication module (RS-422/RS-485, 2-port)
ALE111	Ethernet communication module (1-port)

*1: I/O modules not affecting the safety loop

Inter-SCS Safety Communication Function

When the inter-SCS safety communication function is employed, a safety loop up to SIL 3 (Safety Integrity Levels) can be constructed for multiple SCSs via the Vnet/IP or V net. This function assures the authenticity, quality, proper sequence and timeliness of data. Specifications:

- Specifications:
- The maximum number of SCSs with which safety communication is possible from one SCS is 16 (if one SCS performs bilateral communications, the number of SCS's is counted as 2).
- The maximum number of data items one SCS can transmit is 200.
- The maximum number of data one SCS can receive is 200.

For the compatibility of revision of Inter-SCS safety communication, please refer to "ProSafe-RS Safety Instrumented System Overview (for Vnet/IP)" (GS 32Q01B10-31E) – "■ NETWORK SPECIFICATIONS" – "●Vnet/IP" – "Compatibility in Inter-SCS safety communication".

SCS Link Transmission

There are two types of SCS Link Transmission: SCS Link Transmission Safety Communication and SCS Global Switch Communication. SCS Link Transmission is SIL 3 safety communication function to notify more than one SCS of data. Data in one station is transmitted simultaneously to other SCS on regular basis. One station; moreover, can receive data sent by other stations and refer to it by application logic.

SCS Global Switch Communication makes it possible to refer the data transmitted between SCS and FCS. SCS Global Switch Communication is interference-free.

Communication Specifications

Communication range: limited to the same domain

Control bus: Vnet/IP

Number of available stations: Maximum 63

(However, number of stations that can be referred to is different, depending on CPU as well as communication load) Transmission cycle: fixed to 100 ms

Transmitted Data Reference/Setting

- Number of definition in input function block: Maximum 1000/1 SCS
- Number of definition in output function block: Maximum 128/1 SCS
- No limitation to the number of assignments per receiving station

Software Requirements

- SCS program: R2.03.00 or later
- SENG software: R2.03.00 or later
- SCS project: R2.03.00 or later
- CENTUM VP system revision: R4.02 or later
- CENTUM CS 3000 system revision: R3.09 or later
- FCS system program: R3.08.50 or later

• External Connection Functions

The VP/CS 3000 integration, Modbus communication, sequence-of-events recorder (SOER), and diagnosis information collection functions are described below:

Scan period of External Connection Function

1 or 2 seconds.

VP/CS 3000 Integration Function

The VP/CS 3000 integration function allows the HIS of the VP/CS 3000 to control and monitor an SCS through a tag name interface as well as using a control tag.

When the tag name is defined using the VP/CS 3000 integration function, the HIS can not only monitor the SCS, but also perform a maintenance override. An annunciator message with a priority level assigned can be sent from the SCS.

Function	Details	SCS definition	
category	Details	Function category	Functions
	BOOL type	Internal variable	BOOL
Internal variable	Integer-type (32-bit)	Internal variable	DINT
	REAL number-type (32-bit)	Internal variable	REAL
Input/Output	Discrete	I/O structure	IO_BOOL
variable	Analog	I/O structure	IO_REAL
	Data Setting (BOOL)	Function block	ECW_B
Data Setting from external device	Data Setting (integer)	Function block	ECW_I
	Data Setting (real number)	Function block	ECW_R
Analog input	Analog Input Function Block with Data Status	Function block	ANLG_S
indication	Analog Input	Function block	ANLGI
Velocity limit	Velocity Limit Alarm	Function block	VEL
Appupaiator	Annunciator	Function block	ANN
Annunciator	First-up Alarm Annunciator	Function block	ANN_FUP
	Grouping Override (BOOL)	Function block	GOV_B
	Grouping Override (discrete)	Function block	GOV_IB
	Override (BOOL)	Function block	OVR_B
Override from HIS	Override (integer)	Function block	OVR_I
	Override (real number)	Function block	OVR_R
	Override (discrete)	Function block	OVR_IB
	Override (analog)	Function block	OVR_IR
Password	Password entry	Function block	PASSWD
Manual operation	BOOL-Type Data Manual Operation Function Block with Two-Position Answerback	Function block	MOB_11
	BOOL-Type Data Manual Operation Function Block with Three-Position Answerback	Function block	MOB_21
	Auto-Reset BOOL-Type Data Manual Operation	Function block	MOB_RS
	Analog-Type Data Manual Operation	Function block	MOA
	Subsystem Communication Input (BOOL)	Function block	SCI_B
	Subsystem Communication Input (integer)	Function block	SCI_I
Cubayatan	Subsystem Communication Input (real number)	Function block	SCI_R
Subsystem	Subsystem Communication Output (BOOL)	Function block	SCO_B
	Subsystem Communication Output (integer)	Function block	SCO_I
	Subsystem Communication Output (real number)	Function block	SCO_R

Table Types of SCS Data and Function Blocks for which Tag Name can be Assigned

Modbus Connection Function

SCS can communicate with external equipment, such as sequencers, with Modbus protocol via a serial communication module (ALR111, ALR121). ALR121 serial communication module supports ProSafe-SLS communication function which is to extend the Modbus communication function. (*1) SCS acts as a Modbus master and can read and write external equipment data. External equipment also acts as a Modbus master and can read and write SCS data.

Refer to "ALR111/ALR121 Serial Communication Module" (GS 32Q06K50-31E) when SCS becomes the Modbus master side.

When external equipment becomes the Modbus master side, refer to "ALR111/ALR121 Serial Communication Module" (GS 32Q06K50-31E) or "ALE111 Ethernet Communication Module" (GS 32Q06K51-31E). The Modbus connection function is interference-free.

*1: ProSafe-RS R3.02.20 or later is applicable.

Modbus connection function Communication module	SCS acts as a Modbus master	External equipment acts as a Modbus master
Serial communication module	Х	Х
Ethernet communication module	-	Х

X: Supported -: Not supported

Sequence-of-events Recorder (SOER) Function

The SOER function is composed of an event collection sub-function, event storage sub-function, and time synchronization sub-functions. The HIS can display event information when an SOE viewer package is run on the HIS.

• Event collection and storage sub-function

Event information is collected and stored in the digital input module or in the CPU module of an SCS.

Time stamp resolution of events collected by a digital input module is 1 ms.

Other events are collected by CPU module and their time stamp resolution is SCS scan period.

· Event information to be collected

According to the user definition, SCSs can collect the event information listed in the table below.

Information to be collected	Trigger for event collection and location for collection
Digital input	Changes in the value of data input into the digital input module are set to act as a trigger. This trigger instructs the digital input module to collect events. Whether or not to perform SOE collection can be specified for each channel. (*1)(*3)
Digital output	Changes in the value of data output to the digital output module are set to act as a trigger. This trigger instructs the CPU to collect events. Whether or not to perform SOE collection can be specified for each channel. (*2)(*3)
Analog input	The analog input function block determines the level of the data value for event collection. $(^{4})$
Application logic variable	Each of BOOL-type, INTEGER-type, and REAL-type SOE event collection function blocks collects events. (*4)

*1: If the digital input module is dual-redundant, the module with control authority collects events.

*2: If the output channel is abnormal (the data status is BAD), events are not collected.

*3: A channel comment (a string composed of a maximum of 32 single-byte characters or 16 double-byte characters) needs to be set.

*4: A sequential event identifier (a string composed of a maximum of 32 single-byte characters or 16 double-byte characters) needs to be set to the input terminal ID in a function block. Collect analog output events by a function block for constant SOE event collection.

Storage of Event Information

Event information is stored in an event information file in an SCS. Such event information can be seen from multiple SOE viewers.

There are two kinds of event information files: an event log file and a trip signal file. The event log file contains collected event data. The trip signal file contains events before and after a trip signal that has been specified by a user.

Table Event Information File Specification

	Event log file (*1)	Trip signal file (*2)(*3)
Maximum number of events	15000 events	1500 events (500 before signal generation and 1000 after signal generation)
Maximum number of files	1	2

*1: A diagnosis information message is transmitted to the user every 12000 events.

*2: Upon completion of trip signal file collection, a diagnosis information message is transmitted.
 *3: If the number of events is fewer than 1000 in 30 minutes after the signal is generated, the cre

*3: If the number of events is fewer than 1000 in 30 minutes after the signal is generated, the creation of a trip signal file is terminated. Then a diagnosis information message is transmitted.

Diagnosis Information Collection Function

An SCS transmits a diagnosis information message when it detects an abnormal condition. The transmitted message is stored in the memory of an SCS as diagnosis information. Based on the message contents, information on the time, location, type, etc., of the abnormality can be obtained. An SCS can store up to 5000 pieces of information.

PRM-supported HART On-demand Communication

On-demand communication with a HART device is implemented by Plant Resource Manager (PRM) issuing a HART command, and then receiving a response from the HART device via the SCS. Analog input/output modules with HART function (SAI143-H, SAI533-H) serve as communication relays.

• Test Function

In case of integration with CENTUM VP, the test function can be used. There are two kinds of test. One is designed to debug applications when FCS simulator, SCS simulator and HIS virtual function operate on the PC and the PC is virtually isolated from Vnet/IP. The other is a target test by using actual SCS.

For CENTUM VP test function, please refer to "Test Function" (GS 33K10D50-50E).

SCS Simulator

SCS simulator has SCS system software operating in SCS operate in the PC. It makes possible for the machine to communication with virtual HIS, FCS simulator and SCS simulator on other PCs. It also has an interface function (Exatif) to plant training system used for operator training.

Under the virtual test environment, number of node units for SCS Simulator can be increased by using CFS1350 Node Expansion Package or CFS1355 Node Expansion Package for SCS Simulator. As for the target test environment, CFS1350 Node Expansion Package is used to increase the number of node unit.

• Connect to Plant Expert System (using Exatif Package)

Vnet/IP interface for plant expert system environment is supported.

Standard system configuration is required for more continuous, stable operation than that for test functions.

For details, please refer to "Expanded Test Functions, FCS Simulator Package, HIS Simulator Package" (GS 33K10D60-50E).

PC1: Engineering Function PC2: HIS + HIS Simulator PC3: FCS Simulator PC4: SCS Simulator PC5: SENG

Figure Example of System Configuration

F06.ai

Product	Package	PC1	PC2	PC3	PC4	PC5
ProSafe-RS	CHS5100 Safety System Generation and Maintenance Package					Х
	CHS5200 CENTUM VP/CS 3000 Integration Engineering Package					Х
CENTUM VP (*1)	LHS1100 Standard Operation and Monitoring Functions	_	Х	_		Х
	LHS5100 Standard Builder Function	Х	_	_		
	LHS5420 Test Function Package (*2)	Х	_	_		
	LHS5425 Expanded Test Function Package	Х	_	-		
	LHS5426 FCS Simulator Package (*3)	_	_	Х	Х	
	LHS5427 HIS Simulator Package	_	Х	_		Х
Exatif (*4)		Х	Х	Х	Х	-

Table Package required for each PC on Plant Expart System

X: Required -: Not Required

*1: CENTUM VP R4.02 or later

*2: Including the FCS simulator and HIS simulator

*3: Including the SCS simulator

*4: Install the package in each PC.

APPLICATION CAPACITY

The capacity of the safety control functions of an SCS is called the application capacity. SCS application capacity depends on the mounting status (the type or existence) of ESB Bus Coupler Module. To connect 10 or more I/O nodes (Safety Node Unit), adding CFS1350 Node Expansion Package and mounting SEC402 ESB Bus Coupler Module are required.

When the CFS1355 Node Expansion Package for SCS Simulator is installed in the virtual test environment, the maximum application capacity becomes as same as when SEC402 is mounted.

Category	Item	Maximum capacity			
Mounting status of ESB Bus Coupler Module (*1)		Mounting SEC402	Mounting SEC401	No ESB Bus Coupler Module	
	Number of safety node units	13	9	0	
	Number of slots	(8		
I/O-related items	Number of communication modules	6 (2 modules as slaves and 4 modules as masters)			
	Number of I/O points	1500 (*2)) 1000 (*2)		
	Number of subsystem communication data items	500 (maximum communication data items per SCS)			
	Number of POUs (*3)	500			
Application logic	Number of variables	1500 I/O variables (*2) 4500 internal variables (*2)			
Inter-SCS Safety	Number of produced data	200			
Communication	Number of consumed data	200			
	Number of transmitted data	128			
	Number of received data	1000			
	Number of analog input blocks				
	Number of velocity alarm blocks	total 2700			
	Number of override blocks				
CENTUM VP/CS 3000	Number of password blocks				
	Manual operation function block				
	Number of words contained in communication I/O data	500			
	Number of annunciators	2000			

*1: Two ESB Bus coupler modules (SEC401, SEC402) connect a safety control unit with a safety node unit via ESB Bus cables.

*2: The numbers are for reference.

*3: POU (Program Organization Unit) is a generic term indicating programs, user defined function blocks, and user defined functions.

OPERATING ENVIRONMENT

CFS1300 Safety Control Functions Package and CFS1350 Node Expansion Package work by the following safety control units: SSC60S and SSC60D .

MODELS AND SUFFIX CODES

Safety Control Functions Package (for SSC60 and Vnet/IP)

		Description
Model	CFS1300	Safety Control Functions Package (for SSC60 and Vnet/IP)

Note: A purchase order for the CFS1300 can be placed using the Model and Suffix Codes of SSC60□. A separate order is not necessary.

Node Expansion Package (for SSC60□ and Vnet/IP)

		Description
Model	CFS1350	Node Expansion Package (for SSC60 and Vnet/IP)
Suffix codes	-V	Software License
	1	Always 1
	1	English Version

Node Expansion Package for SCS Simulator (for SSC60□)

		Description
Model	CFS1355	Node Expansion Package for SCS Simulator (for SSC60 \Box)
Suffix codes	-V	Software License
	1	Always 1
	1	English Version

ORDERING INFORMATION

Specify the model and suffix codes.

TRADEMARKS

- ProSafe, CENTUM and Vnet/IP are registered trademarks of Yokogawa Electric Corporation.
- Other company and product names appearing in this document are trademarks or registered trademarks of their respective holders.