FLXA202/21两线制双通道变送器/分析仪

FLEXA系列分析仪是模块化设计的分析仪,用于在工业设施中进行连续在线测量。可提供单双传感器测量,是灵活的两线制分析仪。

 

使用FLXA202,无需多个分析仪,因为通过将内部测量模块替换为所需模块,即可在现场位置轻松扩展,从而为用户提供更高的灵活性,优化OPEX

最多支持两个传感器

FLXA202最多可安装两个传感器,即使在维护期间也可实现不间断测量。对于双传感器测量,传感器模块必须是相同的参数:pH/ORPpH/ORPSCSCDODO。双传感器测量还提供额外的功能,包括来自两个测量参数的各种计算数据,以及将分析仪编程为冗余系统的选项。

先进功能

使用FLXA202,一台分析仪可以接收四种测量类型中的任何一种:pH/ORP、接触电导率(SC)、感应电导率(ISC)和带自诊断功能的溶解氧(DO)传感器。其他功能包括:

  • 连续测量传感器阻抗、不对称电位、斜率,连续监测电极污染/损坏、断偶和测量液位下降(pH分析仪)
  • 用于预测性维护的在线传感器健康度检查

清晰的触摸屏显示,提高可操作性

通过直观的触摸屏操作,FLEXA系列分析仪具备更好的操作性,显示清晰且用户友好,支持12种语言。使用快速设置菜单可立即进行测量,并显示传感器状态和预计维护时间,从而提高效率。交互式屏幕采用坚固的铝压铸外壳(FLXA202)或塑料结构(FLXA21)

模块化设计,提高可扩展性

FLEXA系列分析仪采用模块化设计,采用可更换的传感器模块,可构建各种系统。用户可以选择不使用显示器,也可以选择外壳材质(塑料或不锈钢)

型号代码
FLXA202

FLXA21
危险场所分类  通用型
I级,Div II (不使用IS安全栅)
I级,Div I (使用IS安全栅)
通用型
I级,Div II (不使用IS安全栅)
I级,Div I (使用IS安全栅)
外壳材质 铝合金压铸环氧涂层(标准配置)
铝合金压铸件,带聚氨酯或高防腐涂层(特注)
塑料(聚碳酸酯)
外壳等级 IP66 (加拿大除外)4X(加拿大除外)3S/4X(加拿大)   IP66/ NEMA 4A/ CSA 3S
电源 两线制24 V DC回路供电 两线制24 V DC回路供电
输出信号 双向HART数字通信,叠加在mA (4-20 mA)信号上 双向HART数字通信,叠加在mA (4-20 mA)信号上
可选FF (基金会现场总线)PF (Profibus)通信   

Extension Terminal Junction Box BA10/WTB10

Between measuring plant and control rooms, especially when the distance between these places is greater than the length of the standard appropriate electrode cables, the connecting equipment can be an expedient method for connecting sensor cables to a measuring instrument.

概述:

One of the primary applications for high purity water is for boiler feed water. The measurement of pure water pH can be one of the quickest indicators of process contamination in the production or distribution of pure water. Effective chemical treatment of the feed water is vital in maintaining the useful operating life and minimizing maintenance costs of the boiler.

Industry:Power, Pharmaceutical, Common

行业:
概述:

The control of the world's water resource is arguably one of the most important issues. Water demand from industry and domestic users is set to rise throughout the industrialized world. Yokogawa has been applying minimized maintenance measurement systems.

概述:

Wet scrubbers are used in utilities, paper mills, and chemical plants to remove sulfur dioxide (SO2) and other pollutants from gas streams. Undesirable pollutants are removed by contacting the gases with an aqueous solution or slurry containing a sorbent. The most common sorbents are lime, Ca(OH)2, and limestone, CaCO3

行业:
概述:

For control of batch neutralization, a pH measurement coupled with a timer-controlled chemical feed scheme provides very satisfactory results.

This system can be adapted for either acid waste or alkaline waste neutralization.

概述:

The term "cooling tower" is used to describe both direct (open circuit) and indirect (closed circuit) heat rejection equipment. Cooling towers are heat-transfer units, used to remove heat from any water-cooled system. The cooled water is then re-circulated (and thus, recycled) back into the system. Since the process water is re-circulated, the mineral concentration increases as a result of the evaporation.

Industry:Refining, Food and Beverage, Power, Oil and Gas, Pulp and Paper, Chemical

行业:
概述:

The proliferation of microorganisms and the resultant formation of slime is a problem which commonly occurs in aqueous systems. Problematic slime producing microbes may include bacteria, fungi and/or algae. Slime deposits typically occur in many industrial aqueous systems including cooling water systems, pulp and paper mill systems, petroleum operations, clay and pigment slurries, recreational water systems, air washer systems, decorative fountains, food, beverage, and industrial process pasteurizers, sweetwater systems, gas scrubber systems, latex systems, industrial lubricants, cutting fluids, etc.

Industry:Refining, Food and beverage, Power, Oil and Gas, Pulp and Paper, Chemical

行业:
概述:

There are a number of suppliers of oil and fat products used for edible purposes. These products include, but are not limited to olive oil, peanut oil, soybean oil, sunflower oil, lard, shortening, butter, and margarine. The raw materials for these products include animal by-products, fleshy fruits (palm and olive), and oilseeds. 

Industry:Food and Beverage

概述:

Caustic soda and hydrochloric acid, produced in electrolyzer plants, are fundamental materials used in varieties of industries; chemicals, pharmaceuticals, petrol-chemicals, pulp and papers, etc. Profit is the result of the effective production with minimized running / maintenance cost. Proper control of the process brings you stabilized quality of products with the vast operational profit.

概述:

Process liquid analyzers such as pH meters, conductivity meters, ORP meters, and density meters play an important role at electrolysis plants in the control of concentrations of various process solutions. This requires both precision and stability under harsh conditions that include highly corrosive substances, high temperatures, and many impurities.

概述:

Control of sodium chloride (NaCl) concentration at a salt dissolver where solid salt is dissolved in water, is highly important because of the electrolysis efficiency. A conventional way of measuring the concentration of supersaturated NaCl solution had been performed by using non-contact type sensors (e.g., γ-ray density meter) since NaCl, impurities, and precipitates are in the solution.

概述:

Most zinc are produced at hydrometallurgically, where a high-grade zinc product can be obtained and valuable metals mixed in the raw material can be recovered. In the hydrometallurgy, the raw material of zinc concentrate is roasted and then dissolved in sulfuric acid to remove impurities. The process called leaching and pH control of the leachate is important.

Industry:Chemical, Power

行业:
概述:

In a semiconductor plant, a variety of chemicals are used in various manufacturing processes. The chemicals used for specific purposes are produced by diluting raw liquid with demineralized water using in diluting equipment, and the control of the concentration at this point is performed by conductivity measurement. 

概述:

In the manufacturing process of Pharmaceutical, Chemical and Food & Beverage industries, the cleaning and sterilization of tanks and piping are done with various cleaning solutions, fresh or hot water and steam after manufacturing products. Clean-In-Place (CIP) is the system designed for automatic cleaning and disinfecting.

概述:

Cyanide-bearing wastewater from mining and electroplating facilities and certain types of chemical plants is toxic and must be treated by oxidation with chlorine or chloride to bring the cyanide concentration within regulatory limits.

Industry:Electrical and Electronics

概述:

Introduction

In Bioscience company's pH is used at various places including glass lined reactor for product efficiency. One of such measurement of pH in reactor as explained below.

Application Information

Typical example of process is:

Reactor used is GLASS LINED REACTOR and length is 1950mm; and flange size 100mm split flange with 8 holes

PCB (fixing hole center to center) 190mm; flange outer to outer 225mm; flange extension pipe (Nozzle) ID 95mm.

Nature of fluid: Aqueous media
Operating temp & pressure: 30°C temp & atmosphere pressure
Area classification - Example Zone 1 / Zone 2
Nozzle ID: 95mm.

glass1

Product Recommendation

Measurement System

Process Liquid Analyzer: 

  • 2-wire FLEXA pH/ORP Analyzer
Features
  • Dual sensor measurement on 2-wire type analyser
  • Indication of sensor wellness

 

  • 4-wire PH450G pH/ORP Analyzer

Features

  • Easy touchscreen operation
  • Trending display up to 2 weeks
  • Advanced Process Temperature Compensation

Sensor Selection:

Hamilton® POLILYTE HTVP

Features:

  • Best measurement accuracy both in high-alkali processes and in samples with very low conductivity.
  • Sterilizable and autoclavable
  • SINGLE PORE‘s for clog-free contact of electrolyte with measurement medium
  • HAMILTON “H” pH glass
  • Serialized with batch number

Sensor Accessories

5mtrs Cable, Model No.: WU10-V-S-05 ,

Immersion sensor fitting (Customised): 1900mm Length, 4" Flange Connection with 8 holes PCB (fixing hole centre to centre) 190mm;  flange outer to outer 225mm; pipe (Nozzle) ID95mm. MOC : PTFE.

Tangible benefit

More reliable and accurate analysis of pH which helps to improve end product quality.

Note: For additional information on this application contact the local Yokogawa Process Liquid Analyzer Department

概述:

Continuous technology improvement is ongoing in the pulp & paper industry to obtain the best possible performance. Problems at the wet end (stock preparation) can rarely be corrected downstream. That is why monitoring and controlling pH in pulp stock is critical to the paper making process. Essentially, at every stage in the manufacture of paper, correct pH values play a vital role.

概述:

Reverse osmosis (RO) is a separation process that uses pressure to force a solution through a membrane that retains the solute on one side and allows the pure solvent to pass to the other side. More formally, it is the process of forcing a solvent from a region of high solute concentration through a membrane to a region of low solute concentration by applying a pressure in excess of the osmotic pressure.

概述:

Continuous technology improvement is ongoing in the pulp & paper industry to obtain the best possible performance. The improved plant performance translates to the higher quality improvement and lower cost, and simultaneously environmental friendly plant operation.

行业:
概述:

Wastewater from electroplating facilities and certain types of chemical plants contains toxic forms of hexavalent chromium such as chromate and dichromate. The hexavalent chromium in this wastewater must be reduced before the water can be discharged. This requires a two-step process: hexavalent chromium (CR6) is reduced to trivalent chromium (CR3); and CR3 is precipitated as chromium hydroxide.

Industry:Electrical and Electronics

概述:

Removal of free oil and grease from a wastewater stream reduces the potential for equipment problems to occur further downstream. There are three forms of oil encountered in wastewater treatment at a refinery. 

行业:
概述:

Sour Water is the wastewater that is produced from atmospheric and vacuum crude columns at refineries. Hydrogen sulfide and ammonia are typical components in sour water that need to be removed before the water can be reused elsewhere in the plant. Removal of these components is done by sending the sour water from the process to a stripping tower where heat, in the form of steam, is applied.

概述:

Power plant boiler houses designed to burn coal or high sulfur oil are required by Federal and State pollution regulations to "scrub" (remove) sulfur dioxide from flue gasses to meet emission limits. SO2 in flue gasses is known to be harmful to the environment, as it is one contributor to the formation of acid rain. pH control is critical for the proper functioning of the scrubber system.

行业:
概述:

Seawater leak detection is the post-condensation water quality management processes. Damage to the ion exchange resin, which deionizes the supplied water, is also monitored during this process, and both of these applications are executed by a conductivity analyzer.

概述:

In the past, the boiler feed tank systems in sugar factories had to be checked several times a day to make sure there were no sugar solution leaks. This was a very laborious process and, as continuous monitoring was not possible, monitoring results were not reliable. When a leak occurred, recovery operations were very costly and time-consuming.

行业:
概述:

In maintaining and managing industrial plants, monitoring waste water pH/ORP is both a legal obligation and an unavoidable necessity for protecting the environment. Monitoring without an attentive eye can lead to severe consequences.

概述:

Application Description

Many Ethanol plants running today are using a combination style pH electrode with a non-flowing reference to measure pH in the Mash Slurry transfer line from the Mash slurry mix tank to cook.  The Mash is being pumped out of the Mash Slurry tank is at approximately 82 °C and  2 to 4 bar (180 °F and 40 to 60 psig).

The original pH electrode systems that were installed during plant construction are online retractable assemblies and are mounted in orientations from completely horizontal to completely vertical and everywhere in between.

The Problem

The combination probe that is being used will typically drift out of calibration very quickly.  Also, the probe is damaged sometimes from excessive removal from the process.  The reason this probe drifts out of calibration is due to the fact that the non-flowing reference system plugs and becomes fouled by the mash passing by it.  pH measurements are only as good as the reference required to make this measurement.  If the reference is not doing its job, the measurement electrode will drift.

Process Overview

Product Recommendations

Yokogawa manufactures a multi-probe holder called the FF20 – flow through fitting or the FS20, which is pH chamber assembly with ½” NPT process connections.  With these holders we use a combination electrode, part number:  SC21C-AGC55 for measurement and reference and a separate temperature sensor part number: SM60-T1.  The Yokogawa electrode system works due to the fact that the SC21C-AGC55 combination probe uses a pressurized reference system.  By using plant air regulated to a KCl reservoir, the SC21C-AGC55 utilizes a positive flowing reference that does not foul. 

Plants using this system typically check the pH measurement against a grab sample and only make adjustments if the sample and the online measured values are more than 0.2 pH difference from one another.  Typically, the system will not need daily or weekly calibrations.  Most plants will pull the electrodes once a month for cleaning and calibration in a standard 4 and 7 buffer solutions.

Installation Considerations

The Yokogawa pH system is not retractable from the process.  It is usually best to put the Yokogawa pH electrodes in a by-pass or recirculation line that you can add isolation valves for isolating the probes from the process for maintenance and calibration.  The probe assembly should be mounted downstream of the Slurry Tank transfer pump.  Ideally it will be in a recirculation line going back into the tank or into the suction side of the slurry pump.

The picture below shows an installation that is actually flowing from left to right.  The arrows indicate the direction of the mash flow through the recirculation line and back into the suction side of the pump.  You will get an idea of the installation of the Yokogawa probes and the pressurized reference KCl reservoir from this picture.  The reservoir pressure is typically set 1 to 2 psig above the slurry line pressure.  The KCl reservoir will require refilling every 2-3 months for most applications

Note: For additional information on this application contact the local Yokogawa Process Liquid Analyzer Department

概述:

Introduction 

A process and apparatus for removing SO2 from a gas stream having the steps of scrubbing the SO2 with an ammonia scrubbing solution and removing any aerosols generated by the scrubbing in a wet electrostatic precipitator. The scrubbing solution is maintained at a pH between 6 and 8 to increase the speed of absorption of SO2, to Increase the ratio of sulfite to bisulfite which also facilitates the oxidation of SO2, and to avoid the need to use exotic, corrosion resistant alloys. Ammonium sulfate, a valuable fertilizer, can be withdrawn from the scrubbing solution.

Process background 

Fossil fuels are burned in many industrial processes. Electric power producers, for example, burn large quantities of coal, oil, and natural gas. Sulfur dioxide (“SO2”) is one of the unwanted byproducts of burning any type of fossil fuel. It is known to cause acid rain, and to have serious negative health effects on people, animals, and plants. A great deal of research has been done to find a way to economically remove SO2 from flue gas streams before it enters the atmosphere.

The pH of the ammonium sulfate solution should be kept between about four and six. This range is the result of a compromise between competing factors. On one hand, ammonium sulfate solution is capable of absorbing SO2 more rapidly when its pH is higher. The ability to absorb SO2 better implies that the size of the scrubbing tower can be smaller, thus saving capital costs. In addition, the liquid to gas (“L/G”) ratio can be smaller, meaning less liquid will be required and operating costs will be lower.

On the other hand, higher pH levels are also associated with the release of free ammonia from solution, often termed “ammonia slip.” In addition to incurring an economic loss because of lost ammonia, free ammonia in the scrubbed flue gas reacts with uncaptured sulfur dioxide and trioxide to create an ammonium sulfate/bisulfite aerosol that is visible as a blue or white plume in the stack discharge, leading to secondary pollution problems. Controlling the amount of free ammonia in the desulfurization process is in part a function of the ammonia vapor pressure, which results from a combination of pH and levels of unoxidized ammonium sulfite that remain in the absence of sufficient oxygen. Therefore, high pH values and high levels of unoxidized ammonium sulfite promote ammonia slip.

Typical Process Example 

  • Name of Application / Process: Ammonia Scrubbing
  • Location of Sensor mounting (location name): Tail Gas Scrubber Complex
  • Operating Temp / Max.Temp: 75 to 80 deg C
  • Operating Press / Max. Press: 2 to 2.5 Kg/cm2
  • Type of Installation: On Pipe ( Direct mounting ) / Flow through Chamber (By pass mounting ) /
  • Process Composition: Liquid - Scrub Acid,
    • P2O5:105 ppm,
    • AN (Ammonical Nitrogen):1326 ppm,
    • UN(Urea Nitrogen):22 ppm,
    • TN(Total Nitrogen):1348 ppm,
    • Florine:116 ppm.

Typical problems

  • Frequent cleaning, glass can be eaten away as the temperature and chemical attack glass

Remedies

  • Use of high temperature special sensor

Product Recommendation

Measurement System

Process Liquid Analyzer: 

  • 2-wire FLEXA pH/ORP Analyzer

 

Features

  • Dual sensor measurement on 2-wire type analyser
  • Indication of sensor wellness

 

  • 4-wire PH450G pH/ORP Analyzer

Features

  • Easy touchscreen operation
  • Trending display up to 2 weeks
  • Advanced Process Temperature Compensation

Sensor Selection:

SC25 sensor from Yokogawa is the perfect sensor for this application. High temperature sensor SC25 because of its design can serve purpose.

 

 

Features SC25V

  • External titanium Liquid Earth
  • Pt1000 integration in pH compartment giving highly accurate temperature compensation
  • CIP and Steam cleaning possible
  • Large internal KCl volume giving the sensor a longer life time
  • SC25V-ALP25 for chemically harsh applications and high temperatures

Cable:

  • WU10-V-S series

Retractable fitting:

  • PR10 series

On-line measurements always present extra challenges compared to at-line measurements, for example, when maintenance needs to be done. Applications like this where the sensors have to be removed without interruptions or shut-downs the PR10 is especially suitable. Without any special tools the PR10 can be retracted safely from the process up to 5 bar.

For ease of use optional flush ports are available. In the retracted position the sensor can be kept moist, cleaned or even calibrated. This can all be done without process interruption or disassembly of the armature.

Tangible benefit

Better life of sensor, improve end product quality.

Note: For additional information on this application contact the local Yokogawa Process Liquid Analyzer Department

 

 

概述:

Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leave sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching paper.

概述:

Introduction

The Combined Effects of pH and Percent Methanol on the HPLC Separation of Benzoic Acid and Phenol:

Many mobile-phase variables can affect an HPLC (High Performance Liquid Chromatograph) separation. Among these are pH and the percent and type of organic modifier. The pKa of a weak acid is the pH at which the acid is equally distributed between its protonated (uncharged) and unprotonated (charged) forms. This is illustrated by the Henderson–Hasselbalch equation:

pH = pKa + log ([A_]/[HA]

where [A_] is the concentration of the weak acid in its unprotonated form
and [HA] is the concentration of the weak acid in its protonated form.
 

If the weak acid is equally distributed between its two forms, ([A_]/[HA]) = 1, log ([A_]/[HA]) = 0, and pH = pKa. If the weak acid is not equally distributed between its two forms, then the pH will be either less or greater than the pKa of the weak acid.

For example, if [A_] < [HA], ([A_]/[HA]) < 1, log ([A_]/[HA]) < 0, and pH < pKa. Thus, a weak acid exists primarily in its protonated form at a pH below the pKa and therefore has a greater affinity for the nonpolar stationary phase. If [A_] > [HA], ([A_]/[HA]) > 1, log ([A_]/[HA]) > 0, and pH > pKa. Thus, a weak acid exists primarily in its unprotonated form at a pH above the pKa and therefore has a greater affinity for the polar mobile phase.

Fig 1 - full-factorial experimental design

Fig. 1 - A three-level, two-factor
full-factorial experimental design

Organic modifiers also have an effect on the retention of solutes in HPLC. In the reversed-phase mode (polar mobile phase, nonpolar stationary phase), the most polar solute component will elute first. This is because the most polar component interacts least with the nonpolar stationary phase.

As the polarity of the mobile phase is increased, those solute components that were previously highly retained (nonpolar components) will be retained even more.

Two species that are of public interest because of their classification as moderate environmental and health hazards are benzoic acid (pKa = 4.202) and phenol (pKa = 9.98). The purpose of this study is to investigate the combined effects of pH and percent methanol on the reversed-phase HPLC separation of these compounds.

A three-level, two-factor fullfactorial experimental design will be used to specify nine mobile phases for consideration in this study. The levels of pH were chosen to bracket the pKa value of benzoic acid (below, near,
and above 4.202). It was not possible to study a mobile phase with a pH > 7.5 owing to the pH range limit of the column. A methanol/water mobile phase was selected for this study because methanol is readily available in most undergraduate labs and relatively inexpensive. In addition, both solutes elute in a relatively short time, making completion of this lab during one or two lab periods possible.

Table 1. Mobile Phases Specified by the Experimental Design
 
Phase No. Methanol % pH
1 25 3.0
2 25 4.5
3 25 6.0
4 50 3.0
5 50 4.5
6 50 6.0
7 75 3.0
8 75 4.5
9 75 6.0

Major Observation

At low mobile-phase methanol concentration (25%), as pH increases, the retention time of phenol appears to be unaffected, whereas the retention time of benzoic acid decreases significantly. Over the pH range investigated, the mobile-phase pH is below the pKa of phenol. Thus, phenol will remain in its protonated form and should be unaffected by these mobile-phase changes. However, as pH increases, benzoic acid shifts from its protonated to its unprotonated form, decreasing its affinity for the nonpolar stationary phase and decreasing its retention time.

At intermediate (50%) and high (75%) mobile-phase methanol concentrations, as pH increases, the retention time of phenol remains unaffected by increases in pH while the retention time of benzoic acid decreases. This is consistent with the behaviour at low methanol concentration.

At pH 3.0, as percent methanol increases, the retention times of both phenol and benzoic acid decrease significantly. Because both solutes are polar, increasing mobile-phase polarity causes both to be retained less tightly. At pH 4.5 (slightly above the pKa of benzoic acid) and pH 6.0 (well above the pKa of benzoic acid) as percent methanol increases, the retention times of phenol and benzoic acid decrease. This is consistent with the retention behaviour at pH 3.0.

Typical Process Details

  • Customer plant: Bulk drug plant
  • Application: This is 4 cycle application. There will 
be a pipe connected to inlet which allows process to flow through the column and the same will be sent out from another pipe at outlet.
  • pH measurement is typically required at both the inlet and outlet. Temp: 30-40°C. pH range shall be 7 to 7.5. Between this range the customer can take necessary action to control his process.
  • Conductivity max. 300 micro siemens/cm.
  • Cycle 1: Process contains 95% liquid methanol, 
2% liquid ammonia, 3% water.
  • Cycle 2: Process contains 30% liquid methanol, 
70% water.
  • Cycle 3: Process contains 90% liquid methanol, 
5% liquid ammonia, 3% water, 2% sugar content.
  • Cycle 4: The column will be cleaned by flushing 
with DM water.
概述:

In flue gas desulfurization systems that use magnesium hydroxide (Mg(OH)2) slurry, the consumption of the desulfurization agent (Mg(OH)2) is controlled by using online pH analyzers. A great concern in the pH measurement is heavy staining of the pH electrodes by the Mg(OH)2 slurry. To ensure accurate measurement, frequent cleaning of the electrodes with an acid is required, adding to both maintenance workload and cost.

Industry:Chemical, Power

概述:

To defray energy costs, many industrial plants have their own boilers to generate steam to produce a portion of their energy needs. In addition to generating power, the steam may also be used directly in plant processes or indirectly via heat exchangers or steam jacketed vessels. 

行业:
概述:

Yokogawa has been offering the EXA200 series two- wire liquid analyzer for processes since 1990. This analyzer has been used in various fields including the quality control of raw materials in process plants in the electric power and petrochemical industries, reaction management of products, quality control in waste water facilities, and quality monitoring of river water and tap water.

宣传彩页
使用说明书
一般规格书
软件说明
技术信息
认证信息
产品图示

想要了解更多的信息,技术&解决方案?


联系我们
置顶
WeChat QR Code
横河电机(中国)有限公司
WeChat Recruiting QR Code
横河电机中国招聘