Renewable Energy & Power
14/40

Automated plant and turbine startup and shutdownStartup and shutdown procedures for plants and turbines are very complex and time-consuming, and place great stress on both personnel and equipment. To eliminate operator errors during these critical processes, the CENTUM VP distributed control system has automated plant and turbine startup and shutdown procedures. These are carried out in accordance with Outline of the projectYokogawa Romania modernized the control system at the C.T.E. 11 Location: Plant type: Combined heat and power (CHP) Capacity: Completion: 2020Providing heating and hot water for the population is a general public service, so the company plays an indispensable role for the inhabitants of Bucharest. The thermal energy produced by ELCEN is intended to supply the capital’s district heating system, meeting the energy needs of consumers. ELCEN provides thermal energy for approximately 565,000 apartments in over 8,500 blocks of flats and buildings, in which over 1.25 million inhabitants live, as well as for approximately 5,400 institutions, social facilities and other entities.The electricity produced by ELCEN is delivered to the National Energy System, thus contributing to the country's energy security.Commissioned in 1972, C.T.E. Bucharest Vest is located in the Romanian capital of Bucharest and is the third longest-running power plant of ELCEN. Since 2009 when the combined cycle heat and power (CCHP) unit was constructed next to two existing 125 MW plants, Yokogawa’s CENTUM CS 3000 distributed control system, ProSafe-RS safety instrumented system, and Exaquantum Plant Information Management System have been ensuring the combined production of electricity and heat in full compliance with legal regulations for efficient recovery of heat from production processes, reduction of water and heat losses and reduction of internal electricity consumption, with high thermal efficiency.Bucharest, Romania185 MWVest combined cycle heat and power plant to streamline plant operations by leveraging the latest technology standards on the market as well as reduce the emissions of the plant. The project was completed in a mere eight months despite its complexity and the difficulties under the prolonged Covid-19 pandemic that forced remote working. The acceptance tests and final delivery were done as scheduled, in the final month of 2020.The plant can now be operated by new systems fully automatically either in electrical or thermal primary mode according to consumers’ needs. These processes translate into a constant heat and hot water supply and increased comfort for Bucharest’s citizens. C.T.E. Vest supplies district heating for six of Bucharest’s main neighborhoods: Drumul Taberei, Giulesti, Crangasi, Militari, Politehnica and Valea Cascadelor.Plant InformationExecutive Summary Customer profileElectrocentrale Bucureşti S.A. (ELCEN) plays an important role in the Romanian energy system as it is the main producer of thermal energy in Bucharest (90%) and also an important player in the national electricity market. It owns four thermal power plants (“centrală termoelectrică”, C.T.E.): Bucharest Vest, Grozavesti, Bucharest Sud and Progresu, which produce electricity and heat by cogeneration.The Challenges and the Solutions Challenges of Covid-19 pandemicThe project team included software and hardware engineers from Yokogawa Romania, the main automation contractor, and very supportive personnel from C.T.E. Vest. A major challenge in deploying the system when all work moved to the virtual space was the Covid-19 pandemic. Special protective measures were taken to ensure the safety of the team members while avoiding disruption to communication and commissioning. The team relied on remote support from Yokogawa’s worldwide branches in the Czech Republic, United States, and Australia.Bucharest Vest Thermal Power PlantCENTUM VP boosts C.T.E. Bucureşti Vest Combined Heat and Power Plant in Romania

元のページ  ../index.html#14

このブックを見る