4-Wire pH/ORP Analyzer PH450

The PH450 pH analyzer provides the best accuracy in the industry, featuring an advanced temperature compensation functionality, preloaded calibration standards, stability checks, and online sensor and analyzer diagnostics to provide verifiable results. 

This four-wire, multivariable analyzer combines pH with temperature and ORP (Redox) measurement, all of which can be utilized through the different output functions: two mA current outputs, four independent SPDT contact outputs, and HART. Dynamic sensor checking and wash cycle functions assure trouble free and accurate analysis with minimum maintenance. 

Unique Human Machine Interface

The PH450 has a high-resolution, simple touchscreen menu structure with five language options, so information is clearly visible and easily accessible to the operator. Simply select the language of choice and on-screen instructions assure that the best configuration for the application is obtained.

 

Ideal for Ultrapure Water Applications

The PH450 offers self-diagnostics and process temperature compensation to provide accurate pH measurements in high purity water. One of these temperature compensation methods, the NEN6411 algorithm, takes into account the dissociation of water in strong acid and alkaline solutions, which is especially useful for pH measurement in Pure and Ultrapure water as found in Power Generation Water Chemistry.

Additional Features

  • Capable of analyzing pH, ORP or rH and Temperature measurements at the same time with the same sensor
  • Full PID control possible for both acid and alkaline addition simultaneously
  • Dual High Impedance Capability, allowing for Differential pH/ORP measurements  
  • Enhanced diagnostics, process trending graphics and on-screen logbooks for data storage
  • Two mA-outputs and four SPDT relay contacts with display indicators
  • Hart® Communications
  • FM Class 1, Div.2, Group ABCD, T6 for Ta-20 to 55°C
  • IP66/NEMA4X 1/2 DIN enclosure for Field Mounting and Panel Mounting
  • Three sets of preloaded pH buffer standards (NIST, US and DIN) cover most commonly used pH calibration practices
  • Supports many temperature compensation elements and sensor types
Measuring principle Electrochemical
Input ranges pH: -2 to 16 pH
ORP: -1500 to 1500 mV
rH: 0 to 100 rH
Temperature: -30 to 140 deg C (Pt1000)
Transmission signals General: Two isolated outputs of 4 to 20 mA DC with common negative. Maximum load 600 Ω. Bi-directional HART® digital communication, superimposed on mA1 (4 to 20 mA) signal.
Output function: Linear or Non-linear (21-step table) output for pH, temperature, ORP or rH.
Control function: PID control.
Burn out function: Burn up (21.0 mA) or burn down (3.6 mA) to signal failure accorded with NAMUR NE43.
Hold: The mA-outputs are frozen to the last/fixed value during calibration/commissioning.
Contact outputs General: Four SPDT relay contacts with display indicators.
Switch capacity:
  Maximum values 100 VA, 250 V AC, 5 A
  Maximum values 50 W, 250 V DC, 5 A
Status: High/Low process alarms, selected from pH, ORP, rH and temperature. Configurable delay time and hysteresis. Failure annunciation.
Control function: On/Off, PID duty cycle or pulsed frequency control.
Wash: Contact can be used to start manual- or interval time wash cycles.
Hold: Contact can be used to signal the Hold situation.
Fail: Contact S4 is programmed as fail-safe contact.
Contact input Remote wash cycle start.
Temperature compensation Function Automatic or manual. Compensation to Nernst equation. Process compensation by configurable temperature coefficient, NEN6411 for water or strong acids/bases or programmable matrix.
Calibration Semi-automatic 1 or 2 point calibration using pre-configured NIST, US, DIN buffer tables 4, 7 & 9, or with user defined buffer tables, with automatic stability check. Manual adjustment to grab sample.
Display Graphical Quarter VGA (320 x 240 pixels) LCD with LED backlight and touch screen.
Housing Cast Aluminum housing with chemically resistant coating; Polycarbonate cover with Polycarbonate flexible window, Protection IP66/NEMA 4X/CSA Type 3S
Power supply PH450G-A:
  Ratings; 100 to 240 V AC, Acceptable range; 90 to 264 V AC
  Ratings; 50/60 Hz, Acceptable range; 50 Hz ±5%, 60 Hz ±5 %
  Power Consumption; 15 VA
PH450G-D:
  Ratings; 12 to 24 V DC, Acceptable range; 10.8 to 26.4 V DC
  Power Consumption; 10 W
Environment and operational conditions Ambient temperature: -20 to 55℃ (-5 to 130℉)
Storage temperature: -30 to 70℃ (-20 to 160℉)
Humidity: 10 to 90 % RH at 40℃ (100℉) (non-condensing)
pH input ≤0.01 pH
ORP input ≤1 mV
Temperature ≤0.3℃ (≤0.4℃ for Pt100)
Step response  < 4 sec for 90% (pH 7 - pH 4)

Extension Terminal Junction Box BA10/WTB10

Between measuring plant and control rooms, especially when the distance between these places is greater than the length of the standard appropriate electrode cables, the connecting equipment can be an expedient method for connecting sensor cables to a measuring instrument.

Vue générale:

Wet scrubbers are used in utilities, paper mills, and chemical plants to remove sulfur dioxide (SO2) and other pollutants from gas streams. Undesirable pollutants are removed by contacting the gases with an aqueous solution or slurry containing a sorbent. The most common sorbents are lime, Ca(OH)2, and limestone, CaCO3

Industries:
Notes Applicative
Vue générale:

For control of batch neutralization, a pH measurement coupled with a timer-controlled chemical feed scheme provides very satisfactory results.

This system can be adapted for either acid waste or alkaline waste neutralization.

Notes Applicative
Vue générale:

The term "cooling tower" is used to describe both direct (open circuit) and indirect (closed circuit) heat rejection equipment. Cooling towers are heat-transfer units, used to remove heat from any water-cooled system. The cooled water is then re-circulated (and thus, recycled) back into the system. Since the process water is re-circulated, the mineral concentration increases as a result of the evaporation.

Industry:Refining, Food and Beverage, Power, Oil and Gas, Pulp and Paper, Chemical

Industries:
Vue générale:

The proliferation of microorganisms and the resultant formation of slime is a problem which commonly occurs in aqueous systems. Problematic slime producing microbes may include bacteria, fungi and/or algae. Slime deposits typically occur in many industrial aqueous systems including cooling water systems, pulp and paper mill systems, petroleum operations, clay and pigment slurries, recreational water systems, air washer systems, decorative fountains, food, beverage, and industrial process pasteurizers, sweetwater systems, gas scrubber systems, latex systems, industrial lubricants, cutting fluids, etc.

Industry:Refining, Food and beverage, Power, Oil and Gas, Pulp and Paper, Chemical

Industries:
Vue générale:

There are a number of suppliers of oil and fat products used for edible purposes. These products include, but are not limited to olive oil, peanut oil, soybean oil, sunflower oil, lard, shortening, butter, and margarine. The raw materials for these products include animal by-products, fleshy fruits (palm and olive), and oilseeds. 

Industry:Food and Beverage

Vue générale:

One of the primary applications for high purity water is for boiler feed water. The measurement of pure water pH can be one of the quickest indicators of process contamination in the production or distribution of pure water. Effective chemical treatment of the feed water is vital in maintaining the useful operating life and minimizing maintenance costs of the boiler.

Industry:Power, Pharmaceutical, Common

Industries:
Vue générale:

Process liquid analyzers such as pH meters, conductivity meters, ORP meters, and density meters play an important role at electrolysis plants in the control of concentrations of various process solutions. This requires both precision and stability under harsh conditions that include highly corrosive substances, high temperatures, and many impurities.

Vue générale:

Most zinc are produced at hydrometallurgically, where a high-grade zinc product can be obtained and valuable metals mixed in the raw material can be recovered. In the hydrometallurgy, the raw material of zinc concentrate is roasted and then dissolved in sulfuric acid to remove impurities. The process called leaching and pH control of the leachate is important.

Industry:Chemical, Power

Industries:
Vue générale:

Problems at the wet end of a paper machine can rarely be corrected down stream. That is why monitoring and controlling pH in pulp stock is critical to the paper making process. Essentially, at every stage in the manufacture of paper, correct pH values play a vital role. Variations in the pH value at the head box have a negative effect on the quality of the paper produced.

Vue générale:

Cyanide-bearing wastewater from mining and electroplating facilities and certain types of chemical plants is toxic and must be treated by oxidation with chlorine or chloride to bring the cyanide concentration within regulatory limits.

Industry:Electrical and Electronics

Notes Applicative
Vue générale:

Fish perform all their bodily functions in water. Because fish are totally dependent upon water to breathe, feed and grow, excrete wastes, maintain a salt balance, and reproduce, understanding the physical and chemical qualities of water is critical to successful aquaculture. To a great extent water determines the success or failure of an aquaculture operation.

Vue générale:

Introduction

cobb1Paper is used in a broad array of products essential for everyday life, from newspapers, books, magazines, printing, writing papers to cardboard boxes and bags, paper napkins, sanitary tissues etc. We are daily surrounded by paper products.

The most important use of paper is writing. The quality of paper used for printing or writing should be good and it depends on many parameters. One of the parameters is Cobb, which needs to be controlled.

What is Cobb Control?

Cobb control is nothing but the control of quality and binding of pulp in such a fashion that whatever is written by any source such as ink, etc on paper it should not spread as well as leave its impression on back side of the paper.

How is Cobb Variation Minimized?

Cobb variation is minimized by maintaining pH of the pulp in the range of 5-6 pH. Before processing, the raw pulp pH is in the range of 7-8. This should be controlled and brought down to acidic range i.e. 5 to 6 pH. This is very essential for following reasons.

  1. This ensures proper binding of the fiber
  2. Cobb is controlled
  3. Further it also helps in maintaining paper 
machine run ability at head box.

How is Cobb Control Done?

Cobb control is done by addition of Alum (which is in the range of 2-3 pH) and rosin to pulp. When alum and rosin are mixed with pulp after a certain distance pH of the mixture is measured and if it is not in the desired range the transmitter will control the Alum dosing via controller so that pH of the pulp is maintained. Rosin on the other side has no such controlled action. It will be getting dosed to the pulp continuously in a specific quantity. It is the Alum whose dosing is controlled depending upon pH variations.

Application Overview

By installing pH loop in paper industry not only the Cobb control is done but also customer can achieve the following:

  1. 20% saving in Alum consumption
  2. Eliminate corrosion problem in approach flow 
pipelines, pumps and other equipment. This is because if alum dosing is not controlled, there are chances that more Alum is dosed and it can lead to corrosion of pipes and components.

Summary

Measurement points:

After Rosin tank:

cobb2

Typical problems: Cleaning of sensor in such installations

Remedies: Using retractable fitting this optimum level of pH can be achieved by using Yokogawa's 4-wire pH Analyser with suitable retractable fitting and sensor. Our manual retractable fitting PR10 with Titanium ball valve is designed for use in pulp industry where frequent
cleaning of the sensor is required. For cleaning one has to take out pH sensor, close the ball valve so that the sample will not come out, clean the sensor, open the ball valve and then put back the cleaned sensor. The pH sensor will be a combination electrode having double junction electrodes, which provide long time stability and a prolonged lifetime. In our 4-wire pH analyser on 2nd mA output we have PI control facility. The speed of the alum dosing pumps can be controlled as per pH variations with the help of this feature.

Vue générale:

The treatment of wastewater from pulp and paper plants is a serious environmental concern. Yokogawa's submersion holder with an ultrasonic+air-jet cleaner (customized product) can reduce the manual cleaning frequency to just once every one or two months.

Industry:Pulp & Paper

Industries:
Notes Applicative
Vue générale:

Continuous technology improvement is ongoing in the pulp & paper industry to obtain the best possible performance. Problems at the wet end (stock preparation) can rarely be corrected downstream. That is why monitoring and controlling pH in pulp stock is critical to the paper making process. Essentially, at every stage in the manufacture of paper, correct pH values play a vital role.

Vue générale:

Reverse osmosis (RO) is a separation process that uses pressure to force a solution through a membrane that retains the solute on one side and allows the pure solvent to pass to the other side. More formally, it is the process of forcing a solvent from a region of high solute concentration through a membrane to a region of low solute concentration by applying a pressure in excess of the osmotic pressure.

Vue générale:

Continuous technology improvement is ongoing in the pulp & paper industry to obtain the best possible performance. The improved plant performance translates to the higher quality improvement and lower cost, and simultaneously environmental friendly plant operation.

Industries:
Vue générale:

Wastewater from electroplating facilities and certain types of chemical plants contains toxic forms of hexavalent chromium such as chromate and dichromate. The hexavalent chromium in this wastewater must be reduced before the water can be discharged. This requires a two-step process: hexavalent chromium (CR6) is reduced to trivalent chromium (CR3); and CR3 is precipitated as chromium hydroxide.

Industry:Electrical and Electronics

Vue générale:

Removal of free oil and grease from a wastewater stream reduces the potential for equipment problems to occur further downstream. There are three forms of oil encountered in wastewater treatment at a refinery. 

Notes Applicative
Vue générale:

Sour Water is the wastewater that is produced from atmospheric and vacuum crude columns at refineries. Hydrogen sulfide and ammonia are typical components in sour water that need to be removed before the water can be reused elsewhere in the plant. Removal of these components is done by sending the sour water from the process to a stripping tower where heat, in the form of steam, is applied.

Vue générale:

Power plant boiler houses designed to burn coal or high sulfur oil are required by Federal and State pollution regulations to "scrub" (remove) sulfur dioxide from flue gasses to meet emission limits. SO2 in flue gasses is known to be harmful to the environment, as it is one contributor to the formation of acid rain. pH control is critical for the proper functioning of the scrubber system.

Industries:
Vue générale:

Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leave sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching paper.

Vue générale:

Application Description

Many Ethanol plants running today are using a combination style pH electrode with a non-flowing reference to measure pH in the Mash Slurry transfer line from the Mash slurry mix tank to cook.  The Mash is being pumped out of the Mash Slurry tank is at approximately 82 °C and  2 to 4 bar (180 °F and 40 to 60 psig).

The original pH electrode systems that were installed during plant construction are online retractable assemblies and are mounted in orientations from completely horizontal to completely vertical and everywhere in between.

The Problem

The combination probe that is being used will typically drift out of calibration very quickly.  Also, the probe is damaged sometimes from excessive removal from the process.  The reason this probe drifts out of calibration is due to the fact that the non-flowing reference system plugs and becomes fouled by the mash passing by it.  pH measurements are only as good as the reference required to make this measurement.  If the reference is not doing its job, the measurement electrode will drift.

Process Overview

Product Recommendations

Yokogawa manufactures a multi-probe holder called the FF20 – flow through fitting or the FS20, which is pH chamber assembly with ½” NPT process connections.  With these holders we use a combination electrode, part number:  SC21C-AGC55 for measurement and reference and a separate temperature sensor part number: SM60-T1.  The Yokogawa electrode system works due to the fact that the SC21C-AGC55 combination probe uses a pressurized reference system.  By using plant air regulated to a KCl reservoir, the SC21C-AGC55 utilizes a positive flowing reference that does not foul. 

Plants using this system typically check the pH measurement against a grab sample and only make adjustments if the sample and the online measured values are more than 0.2 pH difference from one another.  Typically, the system will not need daily or weekly calibrations.  Most plants will pull the electrodes once a month for cleaning and calibration in a standard 4 and 7 buffer solutions.

Installation Considerations

The Yokogawa pH system is not retractable from the process.  It is usually best to put the Yokogawa pH electrodes in a by-pass or recirculation line that you can add isolation valves for isolating the probes from the process for maintenance and calibration.  The probe assembly should be mounted downstream of the Slurry Tank transfer pump.  Ideally it will be in a recirculation line going back into the tank or into the suction side of the slurry pump.

The picture below shows an installation that is actually flowing from left to right.  The arrows indicate the direction of the mash flow through the recirculation line and back into the suction side of the pump.  You will get an idea of the installation of the Yokogawa probes and the pressurized reference KCl reservoir from this picture.  The reservoir pressure is typically set 1 to 2 psig above the slurry line pressure.  The KCl reservoir will require refilling every 2-3 months for most applications

Note: For additional information on this application contact the local Yokogawa Process Liquid Analyzer Department

Notes Applicative
Vue générale:

Introduction

The Combined Effects of pH and Percent Methanol on the HPLC Separation of Benzoic Acid and Phenol:

Many mobile-phase variables can affect an HPLC (High Performance Liquid Chromatograph) separation. Among these are pH and the percent and type of organic modifier. The pKa of a weak acid is the pH at which the acid is equally distributed between its protonated (uncharged) and unprotonated (charged) forms. This is illustrated by the Henderson–Hasselbalch equation:

pH = pKa + log ([A_]/[HA]

where [A_] is the concentration of the weak acid in its unprotonated form
and [HA] is the concentration of the weak acid in its protonated form.
 

If the weak acid is equally distributed between its two forms, ([A_]/[HA]) = 1, log ([A_]/[HA]) = 0, and pH = pKa. If the weak acid is not equally distributed between its two forms, then the pH will be either less or greater than the pKa of the weak acid.

For example, if [A_] < [HA], ([A_]/[HA]) < 1, log ([A_]/[HA]) < 0, and pH < pKa. Thus, a weak acid exists primarily in its protonated form at a pH below the pKa and therefore has a greater affinity for the nonpolar stationary phase. If [A_] > [HA], ([A_]/[HA]) > 1, log ([A_]/[HA]) > 0, and pH > pKa. Thus, a weak acid exists primarily in its unprotonated form at a pH above the pKa and therefore has a greater affinity for the polar mobile phase.

Fig 1 - full-factorial experimental design

Fig. 1 - A three-level, two-factor
full-factorial experimental design

Organic modifiers also have an effect on the retention of solutes in HPLC. In the reversed-phase mode (polar mobile phase, nonpolar stationary phase), the most polar solute component will elute first. This is because the most polar component interacts least with the nonpolar stationary phase.

As the polarity of the mobile phase is increased, those solute components that were previously highly retained (nonpolar components) will be retained even more.

Two species that are of public interest because of their classification as moderate environmental and health hazards are benzoic acid (pKa = 4.202) and phenol (pKa = 9.98). The purpose of this study is to investigate the combined effects of pH and percent methanol on the reversed-phase HPLC separation of these compounds.

A three-level, two-factor fullfactorial experimental design will be used to specify nine mobile phases for consideration in this study. The levels of pH were chosen to bracket the pKa value of benzoic acid (below, near,
and above 4.202). It was not possible to study a mobile phase with a pH > 7.5 owing to the pH range limit of the column. A methanol/water mobile phase was selected for this study because methanol is readily available in most undergraduate labs and relatively inexpensive. In addition, both solutes elute in a relatively short time, making completion of this lab during one or two lab periods possible.

Table 1. Mobile Phases Specified by the Experimental Design
 
Phase No. Methanol % pH
1 25 3.0
2 25 4.5
3 25 6.0
4 50 3.0
5 50 4.5
6 50 6.0
7 75 3.0
8 75 4.5
9 75 6.0

Major Observation

At low mobile-phase methanol concentration (25%), as pH increases, the retention time of phenol appears to be unaffected, whereas the retention time of benzoic acid decreases significantly. Over the pH range investigated, the mobile-phase pH is below the pKa of phenol. Thus, phenol will remain in its protonated form and should be unaffected by these mobile-phase changes. However, as pH increases, benzoic acid shifts from its protonated to its unprotonated form, decreasing its affinity for the nonpolar stationary phase and decreasing its retention time.

At intermediate (50%) and high (75%) mobile-phase methanol concentrations, as pH increases, the retention time of phenol remains unaffected by increases in pH while the retention time of benzoic acid decreases. This is consistent with the behaviour at low methanol concentration.

At pH 3.0, as percent methanol increases, the retention times of both phenol and benzoic acid decrease significantly. Because both solutes are polar, increasing mobile-phase polarity causes both to be retained less tightly. At pH 4.5 (slightly above the pKa of benzoic acid) and pH 6.0 (well above the pKa of benzoic acid) as percent methanol increases, the retention times of phenol and benzoic acid decrease. This is consistent with the retention behaviour at pH 3.0.

Typical Process Details

  • Customer plant: Bulk drug plant
  • Application: This is 4 cycle application. There will 
be a pipe connected to inlet which allows process to flow through the column and the same will be sent out from another pipe at outlet.
  • pH measurement is typically required at both the inlet and outlet. Temp: 30-40°C. pH range shall be 7 to 7.5. Between this range the customer can take necessary action to control his process.
  • Conductivity max. 300 micro siemens/cm.
  • Cycle 1: Process contains 95% liquid methanol, 
2% liquid ammonia, 3% water.
  • Cycle 2: Process contains 30% liquid methanol, 
70% water.
  • Cycle 3: Process contains 90% liquid methanol, 
5% liquid ammonia, 3% water, 2% sugar content.
  • Cycle 4: The column will be cleaned by flushing 
with DM water.
Vue générale:

In flue gas desulfurization systems that use magnesium hydroxide (Mg(OH)2) slurry, the consumption of the desulfurization agent (Mg(OH)2) is controlled by using online pH analyzers. A great concern in the pH measurement is heavy staining of the pH electrodes by the Mg(OH)2 slurry. To ensure accurate measurement, frequent cleaning of the electrodes with an acid is required, adding to both maintenance workload and cost.

Industry:Chemical, Power

Notes Applicative
Vue générale:

Introduction 

A process and apparatus for removing SO2 from a gas stream having the steps of scrubbing the SO2 with an ammonia scrubbing solution and removing any aerosols generated by the scrubbing in a wet electrostatic precipitator. The scrubbing solution is maintained at a pH between 6 and 8 to increase the speed of absorption of SO2, to Increase the ratio of sulfite to bisulfite which also facilitates the oxidation of SO2, and to avoid the need to use exotic, corrosion resistant alloys. Ammonium sulfate, a valuable fertilizer, can be withdrawn from the scrubbing solution.

Process background 

Fossil fuels are burned in many industrial processes. Electric power producers, for example, burn large quantities of coal, oil, and natural gas. Sulfur dioxide (“SO2”) is one of the unwanted byproducts of burning any type of fossil fuel. It is known to cause acid rain, and to have serious negative health effects on people, animals, and plants. A great deal of research has been done to find a way to economically remove SO2 from flue gas streams before it enters the atmosphere.

The pH of the ammonium sulfate solution should be kept between about four and six. This range is the result of a compromise between competing factors. On one hand, ammonium sulfate solution is capable of absorbing SO2 more rapidly when its pH is higher. The ability to absorb SO2 better implies that the size of the scrubbing tower can be smaller, thus saving capital costs. In addition, the liquid to gas (“L/G”) ratio can be smaller, meaning less liquid will be required and operating costs will be lower.

On the other hand, higher pH levels are also associated with the release of free ammonia from solution, often termed “ammonia slip.” In addition to incurring an economic loss because of lost ammonia, free ammonia in the scrubbed flue gas reacts with uncaptured sulfur dioxide and trioxide to create an ammonium sulfate/bisulfite aerosol that is visible as a blue or white plume in the stack discharge, leading to secondary pollution problems. Controlling the amount of free ammonia in the desulfurization process is in part a function of the ammonia vapor pressure, which results from a combination of pH and levels of unoxidized ammonium sulfite that remain in the absence of sufficient oxygen. Therefore, high pH values and high levels of unoxidized ammonium sulfite promote ammonia slip.

Typical Process Example 

  • Name of Application / Process: Ammonia Scrubbing
  • Location of Sensor mounting (location name): Tail Gas Scrubber Complex
  • Operating Temp / Max.Temp: 75 to 80 deg C
  • Operating Press / Max. Press: 2 to 2.5 Kg/cm2
  • Type of Installation: On Pipe ( Direct mounting ) / Flow through Chamber (By pass mounting ) /
  • Process Composition: Liquid - Scrub Acid,
    • P2O5:105 ppm,
    • AN (Ammonical Nitrogen):1326 ppm,
    • UN(Urea Nitrogen):22 ppm,
    • TN(Total Nitrogen):1348 ppm,
    • Florine:116 ppm.

Typical problems

  • Frequent cleaning, glass can be eaten away as the temperature and chemical attack glass

Remedies

  • Use of high temperature special sensor

Product Recommendation

Measurement System

Process Liquid Analyzer: 

  • 2-wire FLEXA pH/ORP Analyzer

 

Features

  • Dual sensor measurement on 2-wire type analyser
  • Indication of sensor wellness

 

  • 4-wire PH450G pH/ORP Analyzer

Features

  • Easy touchscreen operation
  • Trending display up to 2 weeks
  • Advanced Process Temperature Compensation

Sensor Selection:

SC25 sensor from Yokogawa is the perfect sensor for this application. High temperature sensor SC25 because of its design can serve purpose.

 

 

Features SC25V

  • External titanium Liquid Earth
  • Pt1000 integration in pH compartment giving highly accurate temperature compensation
  • CIP and Steam cleaning possible
  • Large internal KCl volume giving the sensor a longer life time
  • SC25V-ALP25 for chemically harsh applications and high temperatures

Cable:

  • WU10-V-S series

Retractable fitting:

  • PR10 series

On-line measurements always present extra challenges compared to at-line measurements, for example, when maintenance needs to be done. Applications like this where the sensors have to be removed without interruptions or shut-downs the PR10 is especially suitable. Without any special tools the PR10 can be retracted safely from the process up to 5 bar.

For ease of use optional flush ports are available. In the retracted position the sensor can be kept moist, cleaned or even calibrated. This can all be done without process interruption or disassembly of the armature.

Tangible benefit

Better life of sensor, improve end product quality.

Note: For additional information on this application contact the local Yokogawa Process Liquid Analyzer Department

 

 

Livres électronique
Vue générale:

The lifetime of a pH sensor has a significant impact on the overall annual costs of a pH measuring loop. Optimizing four key factors will decrease these costs and optimize process control and overall plant efficiency.

Tutoriels

Rechercher plus d'informations sur nos compétences, technologies et solutions


Contactez-nous
 
Haut