Product Registration

Thank you for purchasing YOKOGAWA products.

YOKOGAWA provides registered users with a variety of information and services. Please allow us to serve you best by completing the product registration form accessible from our homepage.

http://www.yokogawa.com/tm/
Thank you for purchasing the WT3000 Precision Power Analyzer. The WT3000 is an instrument capable of measuring parameters such as voltage, current, and power with high precision.

This user's manual contains useful information about the instrument's functions and operating procedures and lists the handling precautions of the WT3000. To ensure correct use, please read this manual thoroughly before beginning operation. After reading the manual, keep it in a convenient location for quick reference whenever a question arises during operation.

Three manuals, including this one, are provided as manuals for the WT3000. Please read all of them.

<table>
<thead>
<tr>
<th>Manual Title</th>
<th>Manual No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT3000 Precision Power Analyzer User's Manual</td>
<td>IM 760301-01E</td>
<td>This manual. Explains all functions and procedures of</td>
</tr>
<tr>
<td>(Vol 1/3)</td>
<td></td>
<td>the WT3000 excluding the expansion functions and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>communication functions.</td>
</tr>
<tr>
<td>WT3000 Precision Power Analyzer Communication</td>
<td>IM 760301-17E</td>
<td>Explains the functions for controlling the</td>
</tr>
<tr>
<td>WT3000 Precision Power Analyzer Expansion</td>
<td>IM 760301-51E</td>
<td>Explains the expansion functions (motor evaluation</td>
</tr>
<tr>
<td>Function User's Manual (Vol 3/3)</td>
<td></td>
<td>function and options) of the WT3000 and their operating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procedures.</td>
</tr>
</tbody>
</table>

Note

- The contents of this manual are subject to change without prior notice as a result of continuing improvements to the instrument's performance and functions. The figures given in this manual may differ from those that actually appear on your screen.
- Every effort has been made in the preparation of this manual to ensure the accuracy of its contents. However, should you have any questions or find any errors, please contact your nearest YOKOGAWA dealer.
- Copying or reproducing all or any part of the contents of this manual without the permission of Yokogawa Electric Corporation is strictly prohibited.
- The TCP/IP software of this product and the document concerning the TCP/IP software have been developed/created by YOKOGAWA based on the BSD Networking Software, Release 1 that has been licensed from the University of California.

Trademarks

- Microsoft, Internet Explorer, MS-DOS, Windows, Windows NT, and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
- Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Incorporated.
- For purposes of this manual, the ® and TM symbols do not accompany their respective registered trademark names or trademark names.
- Other company and product names are registered trademarks or trademarks of their respective holders.

Revisions

- 1st Edition December 2004
- 2nd Edition June 2005
- 3rd Edition January 2006
- 4th Edition December 2006
- 7th Edition September 2013
- 8th Edition February 2014
Checking the Contents of the Package

Unpack the box and check the contents before operating the instrument. If some of the contents are not correct or missing or if there is physical damage, contact the dealer from which you purchased them.

WT3000

Check that the model name and suffix code given on the name plate on the side panel match those on your order.

• MODEL and SUFFIX Codes

<table>
<thead>
<tr>
<th>Model/Item</th>
<th>Suffix Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>760301</td>
<td>-01</td>
<td>30-A input element (selectable only for the 760301)</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>2-A input element (selectable only for the 760301)</td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>30-A input element (selectable only for the 760302)</td>
</tr>
<tr>
<td></td>
<td>-20</td>
<td>2-A input element (selectable only for the 760302)</td>
</tr>
<tr>
<td></td>
<td>-03</td>
<td>30-A input element (selectable only for the 760303)</td>
</tr>
<tr>
<td></td>
<td>-30</td>
<td>2-A input element (selectable only for the 760303)</td>
</tr>
<tr>
<td></td>
<td>-04</td>
<td>30-A input element (selectable only for the 760304)</td>
</tr>
<tr>
<td></td>
<td>-40</td>
<td>2-A input element (selectable only for the 760304)</td>
</tr>
<tr>
<td></td>
<td>-SV</td>
<td>Standard version</td>
</tr>
<tr>
<td></td>
<td>-MV</td>
<td>Motor version</td>
</tr>
<tr>
<td></td>
<td>-D</td>
<td>UL, CSA standard power cord</td>
</tr>
<tr>
<td></td>
<td>-F</td>
<td>VDE standard power cord</td>
</tr>
<tr>
<td></td>
<td>-G</td>
<td>BS standard power cord</td>
</tr>
<tr>
<td></td>
<td>-R</td>
<td>AS standard power cord</td>
</tr>
<tr>
<td></td>
<td>-H</td>
<td>GB standard power cord</td>
</tr>
<tr>
<td></td>
<td>-N</td>
<td>NBR Standard power cord</td>
</tr>
<tr>
<td></td>
<td>/G5</td>
<td>Harmonic measurement (With the release of the /G6 option, the /G5 option has been discontinued in July 2006.)</td>
</tr>
<tr>
<td></td>
<td>/G6</td>
<td>Advanced computation (Harmonic measurement in normal measurement mode, wide bandwidth harmonic measurement, IEC harmonic measurement, waveform computation, FFT, and saving of waveform sampling data)</td>
</tr>
<tr>
<td></td>
<td>/B5</td>
<td>Built-in printer</td>
</tr>
<tr>
<td></td>
<td>/DT</td>
<td>Delta computation</td>
</tr>
<tr>
<td></td>
<td>/FQ</td>
<td>Frequency measurement add-on (simultaneous measurement on all input elements possible)</td>
</tr>
<tr>
<td></td>
<td>/DA</td>
<td>20-channel D/A output</td>
</tr>
<tr>
<td></td>
<td>/V1</td>
<td>VGA output</td>
</tr>
<tr>
<td></td>
<td>/C2</td>
<td>RS-232 communications</td>
</tr>
<tr>
<td></td>
<td>/C12</td>
<td>USB port (PC)</td>
</tr>
<tr>
<td></td>
<td>/C5</td>
<td>USB port (peripheral device)</td>
</tr>
<tr>
<td></td>
<td>/C7</td>
<td>Ethernet communications</td>
</tr>
<tr>
<td></td>
<td>/FL</td>
<td>Voltage fluctuation and flicker measurement</td>
</tr>
<tr>
<td></td>
<td>/C7</td>
<td>Cycle-by-cycle measurement</td>
</tr>
</tbody>
</table>

*1 Make sure that the attached power cord meets the designated standards of the country and area that you are using it in.
*2 The relationship between the firmware version of the WT3000 and /G5 or G6 is as follows:
/G5: Firmware version 1.01 or later
/G6: Firmware version 3.01 or later
The description in this manual assumes the /G6 option. The /G5 option corresponds to the “harmonic measurement in normal measurement mode” in the explanation of the /G6 option.

*3 Select either one.

Suffix Code Example
30-A input elements installed to input elements 1 and 2, motor version, UL, CSA standard power cord, built-in printer option, and 20-channel D/A output option: 760302-02-MV-D/B5/DA

• No. (Instrument Number)
When contacting the dealer from which you purchased the instrument, please give them the instrument number.

Waste Electrical and Electronic Equipment (WEEE), Directive 2002/96/EC
This product complies with the WEEE Directive (2002/96/EC) marking requirement. The affixed product label (see below) indicates that you must not discard this electrical/electronic product in domestic household waste.
Product Category
With reference to the equipment types in the WEEE directive Annex 1, this product is classified as a “Monitoring and Control instrumentation” product.
Do not dispose in domestic household waste.
To return unwanted products, contact your local Yokogawa Europe B. V. office.

New EU Battery Directive
New EU Battery Directive, DIRECTIVE 2006/66/EC
(This directive is valid only in the EU.)
Batteries are included in this product. This marking indicates they shall be sorted out and collected as ordained in ANNEX II in DIRECTIVE 2006/66/EC.
Battery type
Lithium battery
You cannot replace batteries by yourself. When you need to replace batteries, contact your local Yokogawa Europe B.V.office.
Checking the Contents of the Package

Standard Accessories

The standard accessories below are supplied with the instrument.

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Part No.</th>
<th>Quantity</th>
<th>Note</th>
</tr>
</thead>
</table>
| Power cord\(^1\) | One of the following power cords is included according to the suffix code on the previous page.
A1006WD | 1 | UL, CSA standard power cord
Maximum rated voltage: 125 V |
A1009WD | 1 | VDE standard power cord
Maximum rated voltage: 250 V |
A1054WD | 1 | BS standard power cord
Maximum rated voltage: 250 V |
A1024WD | 1 | AS standard power cord
Maximum rated voltage: 250 V |
A1064WD | 1 | GB standard power cord
Maximum rated voltage: 250 V |
A1088WD | 1 | NBR standard power cord
Maximum rated voltage: 250 V |
| Power fuse | A1463EF | 1 | 250 V, 6.3 A, time lag
Attached to the fuse holder |
| Rubber feet | A9088ZM | 2 | Two pieces in one set. Two sets provided. |
| Current input protective cover | B9318FX | 1 | With four attachment screws |
| Safety terminal adapter set | 758931 | See right | Same number as the number of installed input elements.
760301: 1 set with 1 hexagonal socket wrench
760302: 2 sets with 1 hexagonal socket wrench
760303: 3 sets with 1 hexagonal socket wrench
760304: 4 sets with 1 hexagonal socket wrench |
| Printer roll paper | B9316FX | 2 | For the built-in printer
Provided only with option /B5 |
| 36-pin connector | A1005JD | 1 | For D/A output
Provided only with option /DA |
| User’s Manual (Vol 1/3) | IM760301-01E | 1 | This manual |
| Communication Interface User’s Manual (Vol 2/3) | IM760301-17E | 1 | CD-ROM
(CD-ROM part number: B9318ZZ) |
| Printed manuals can be purchased separately. Contact your nearest YOKOGAWA dealer. |
| Expansion Function User’s Manual (Vol 3/3) | IM760301-51E | 1 | Provided on models with suffix code -MV, /G5, /G6, /B5, /DT, /DA, /V1, /C7, /FL, or /CC. |

Power cord (One of the following power cords is included according to the suffix code)

- **A1006WD** (-D)
- **A1009WD** (-F)
- **A1054WD** (-Q)
- **A1024WD** (-R)
- **A1064WD** (-H)
- **A1088WD** (-N)

Accessories Diagram

- **Power fuse** A1463EF
- **Rubber feet** A9088ZM
- **Current input protective cover** B9318FX
- **Safety terminal adapter set** 758931
- **Printer roll paper** B9316FX
- **36-pin connector** A1005JD
- **User’s Manual (this manual)** IM760301-01E
- **Communication Interface User’s Manual** IM760301-17E (CD-ROM)
- **Expansion Function User’s Manual** IM760301-51E

\(^1\) Make sure that the attached power cord meets the designated standards of the country and area that you are using it in.
Optional Accessories (Sold Separately)

The optional accessories below are available for purchase separately.

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Part No.</th>
<th>Quantity</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement lead</td>
<td>758917</td>
<td>1</td>
<td>Two leads in one set, used with the separately sold 758922 or 758929 adapter, length 0.75 m, ratings 1000 V</td>
</tr>
<tr>
<td>Safety terminal adapter set</td>
<td>758923 758931</td>
<td>1</td>
<td>2 pieces in one set. Rated voltage 600 V. 2 pieces in one set. Rated voltage 1000 V.</td>
</tr>
<tr>
<td>Alligator clip adapter set</td>
<td>758922 758929</td>
<td>1</td>
<td>Two pieces in one set, for the 758917 measurement lead. Rated voltage 300 V Two pieces in one set, for the 758917 measurement lead. Rated voltage 1000 V</td>
</tr>
<tr>
<td>Fork terminal measurement lead adapter set</td>
<td>758921</td>
<td>1</td>
<td>Two pieces in one set, for the 758917 measurement lead. Rated voltage 1000 V, rated current 25 A</td>
</tr>
<tr>
<td>BNC-BNC measurement lead</td>
<td>366924 366925</td>
<td>1</td>
<td>42 V or less, length 1 m 42 V or less, length 2 m</td>
</tr>
<tr>
<td>External sensor cable</td>
<td>B9284LK</td>
<td>1</td>
<td>For connecting the current sensor input connector of the WT3000, length 0.5 m</td>
</tr>
<tr>
<td>Conversion adapter</td>
<td>758924</td>
<td>1</td>
<td>BNC-4 mm socket adapter, rated voltage 500 V</td>
</tr>
<tr>
<td>Serial port adapter</td>
<td>366971</td>
<td>1</td>
<td>9 pin 1-25 pin 2 adapter 1 EIA-574 Standard 2 EIA-232 Standard (RS-232)</td>
</tr>
</tbody>
</table>

Spare Parts (Sold Separately)

The spare parts below are available for purchase separately.

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Part No.</th>
<th>Quantity</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer roll paper</td>
<td>B9316FX</td>
<td>10</td>
<td>One roll is one set, thermal-sensitive paper, total length 10 m</td>
</tr>
<tr>
<td>Power fuse</td>
<td>A1463EF</td>
<td>2</td>
<td>250 V, 6.3 A, time lag</td>
</tr>
</tbody>
</table>
Safety Precautions

This instrument is an IEC safety class 01 instrument (provided with a terminal for protective earth grounding).

The general safety precautions described herein must be observed during all phases of operation. If the instrument is used in a manner not specified in this manual, the protection provided by the instrument may be impaired. Yokogawa Electric Corporation assumes no liability for the customer’s failure to comply with these requirements.

The following symbols are used on this instrument.

⚠️ "Handle with care." (To avoid injury, death of personnel or damage to the instrument, the operator must refer to the explanation in the User’s Manual or Service Manual.)

Electric shock, danger

Alternating current

Both direct and alternating current

ON (power)

OFF (power)

ON (power) state

OFF (power) state

Grounding

Failure to comply with the precautions below could lead to injury or death or damage to the instrument.

WARNING

- **Use the Instrument Only for Its Intended Purpose**
 The WT3000 is a power measurement instrument that can measure parameters such as voltage, current, and power. Do not use this instrument for anything other than as a power measurement instrument.

- **Check the Physical Appearance**
 Do not use the instrument if there is a problem with its physical appearance.

- **Use the Correct Power Supply**
 Before connecting the power cord, ensure that the source voltage matches the rated supply voltage of the instrument and that it is within the maximum rated voltage of the provided power cord.

- **Use the Correct Power Cord and Plug**
 To prevent the possibility of electric shock or fire, be sure to use the power cord supplied by YOKOGAWA. The main power plug must be plugged into an outlet with a protective earth terminal. Do not disable this protection by using an extension cord without protective earth grounding.
• **Connect the Protective Ground Terminal**
 Be sure to connect the protective earth to prevent electric shock before turning ON the power. The power cord that comes with the instrument is a three-prong type power cord. Connect the power cord to a properly grounded three-prong outlet.

• **Do Not Impair the Protective Grounding**
 Never cut off the internal or external protective earth wire or disconnect the wiring of the protective earth terminal. Doing so poses a potential shock hazard.

• **Do Not Operate with Defective Protective Grounding or Fuse**
 Do not operate the instrument if the protective earth or fuse might be defective. Also, make sure to check them before operation.

• **Do Not Operate in an Explosive Atmosphere**
 Do not operate the instrument in the presence of flammable liquids or vapors. Operation in such an environment constitutes a safety hazard.

• **Do Not Remove the Covers or Disassemble or Alter the Instrument**
 Only qualified YOKOGAWA personnel may remove the covers and disassemble or alter the instrument. The inside of the instrument is dangerous because parts of it have high voltages.

• **Ground the Instrument before Making External Connections**
 Securely connect the protective grounding before connecting to the item under measurement or to an external control unit. If you are going to touch the circuit, make sure to turn OFF the circuit and check that no voltage is present.

• **Measurement Category**
 This instrument is a measurement category II product. Do not use it for measurement category III or IV measurements.

• **Installation Location**
 • This instrument is designed to be used indoors. Do not install or use it outdoors.
 • Install the instrument so that you can immediately remove the power cord if an abnormal or dangerous condition occurs.

CAUTION

Operating Environment Limitations
 This product is a Class A (for industrial environments) product. Operation of this product in a residential area may cause radio interference in which case the user will be required to correct the interference.
Conventions Used in This Manual

Safety Markings

The following markings are used in this manual.

![Warning Symbol]

WARNING Calls attention to actions or conditions that could cause serious or fatal injury to the user, and precautions that can be taken to prevent such occurrences.

CAUTION Calls attentions to actions or conditions that could cause light injury to the user or damage to the instrument or user’s data, and precautions that can be taken to prevent such occurrences.

Note Calls attention to information that is important for proper operation of the instrument.

Subheadings

On pages that describe the operating procedures in chapters 3 through 11, the following symbols, displayed characters, and terminology are used to distinguish the procedures from their explanations.

Procedure Follow the numbered steps. All procedures are written with inexperienced users in mind; experienced users may not need to carry out all the steps.

Explanation This subsection describes the setting parameters and the limitations on the procedures. It may not give a detailed explanation of the function. For a detailed explanation of the function, see chapter 2.

Displayed Characters and Terminology Used in the Procedural Explanations

Panel Keys and Soft keys

Bold characters used in the procedural explanations indicate characters that are marked on the panel keys or the characters of the soft keys or menus displayed on the screen.

SHIFT+Panel Key

`SHIFT+key` means you will press the `SHIFT` key to turn ON the `SHIFT` key followed by the operation key. The setup menu marked in purple below the panel key that you pressed appears on the screen.

Unit

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Denotes 1000. Example: 12 kg, 100 kHz</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Denotes 1024. Example: 459 KB (file data size)</td>
<td></td>
</tr>
</tbody>
</table>
Flow of Operation

The figure below is provided to familiarize the first-time user with the general flow of the WT3000 operation. For a description of each item, see the relevant section or chapter. In addition to the sections and chapters that are referenced in the figure below, this manual also contains safety precautions for handling the instrument and performing wiring work. Keep them in mind and make sure to observe them.

Operation of Basic Functions

- Describes the flow of operation of the basic functions of the instrument from measurement preparation, to measurement execution, display of measured results, and data acquisition.

Operation of Expansion Functions

- For the operation of expansion functions, see the Expansion Function User’s Manual IM760301-51E. Use the expansion functions as necessary for your application.

Measurement Preparation

- Install the instrument ➔ Section 3.2
- Connect the power supply and turning ON/OFF the power switch ➔ Sections 3.3 and 3.4
- Select the measurement method ➔ Section 3.8
- Wire the circuit under measurement ➔ Sections 3.9 to 3.11
- Set the measurement conditions ➔ Chapter 4

Display Measured/Calculated Results

- Measured power ➔ Sections 5.1 to 5.10
- Integration value ➔ Sections 5.11 to 5.15
- Voltage/Current waveform ➔ Chapter 6
- Trend ➔ Chapter 7

Data Acquisition

- Store to internal memory ➔ Chapter 8
- Save to PC card ➔ Chapter 9

- Harmonic meas. > bar graph, vector
- IEC harmonic measurement
- Motor evaluation
- Delta computation
- Waveform computation
- FFT
- Voltage fluctuation and flicker measurement Cycle-by-cycle measurement ➔ Expansion Function User’s Manual IM760301-51E

- Print on the built-in printer
- D/A output
- RGB video signal (VGA) output ➔ Expansion Function User’s Manual IM760301-51E
- Output via RS-232, Ethernet, or USB communication ➔ Communication Interface User’s Manual IM760301-17E (CD-ROM)
Contents

Checking the Contents of the Package ... ii
Safety Precautions .. vi
Conventions Used in This Manual ... viii
Flow of Operation .. ix

Chapter 1 Names and Functions of Parts
1.1 Front Panel, Rear Panel, and Top Panel .. 1-1
1.2 Setup Menu Display Key and Execution Key ... 1-3
1.3 Display Screen ... 1-10

Chapter 2 Functional Description
2.1 System Configuration and Block Diagram ... 2-1
2.2 Measurement Modes and Measurement Functions 2-3
2.3 Measurement Conditions .. 2-9
2.4 Power Measurement ... 2-15
2.5 Computation ... 2-17
2.6 Integration .. 2-21
2.7 Waveform Display .. 2-24
2.8 Trend, Bar Graph, and Vector Displays ... 2-31
2.9 Waveform Computation and FFT ... 2-33
2.10 Voltage Fluctuation and Flicker and Cycle-by-Cycle Measurements 2-34
2.11 Saving and Loading Data and Other Functions 2-35

Chapter 3 Before Starting Measurements
3.1 Handling Precautions ... 3-1
3.2 Installing the Instrument .. 3-2
3.3 Connecting the Power Supply ... 3-4
3.4 Turning ON/OFF the Power Switch .. 3-5
3.5 Wiring Precautions .. 3-7
3.6 Assembling the Adapter to Be Connected to the Voltage Input Terminal .. 3-10
3.7 Wiring for Making Accurate Measurements ... 3-12
3.8 Guide for Selecting the Method Used to Measure the Power 3-13
3.9 Wiring the Circuit under Measurement for Direct Input 3-14
3.10 Wiring the Circuit under Measurement When Using the Current Sensor .. 3-17
3.11 Wiring the Circuit under Measurement When Using the VT/CT 3-21
3.12 Setting the Date/Time .. 3-24
3.13 Initializing the Settings .. 3-26
3.14 Entering Values and Character Strings .. 3-28
3.15 Entering Character Strings on the USB Keyboard 3-32
3.16 Switching the Measurement Mode and Display 3-34
3.17 Displaying the Setup Parameter List ... 3-39
3.18 Selecting the Message Language ... 3-41
3.19 Setting the USB Keyboard Language ... 3-43
Chapter 4 Measurement Conditions
4.1 Selecting the Wiring System ... 4-1
4.2 Selecting Independent Setting of Input Elements 4-4
4.3 Setting the Measurement Range for Direct Input 4-6
4.4 Setting the Measurement Range When Using the External Current Sensor 4-12
4.5 Setting the Scaling Function When Using VT/CT 4-15
4.6 Selecting the Crest Factor .. 4-18
4.7 Setting the Measurement Period ... 4-19
4.8 Selecting the Input Filter ... 4-22
4.9 Selecting the Averaging Function ... 4-24
4.10 Selecting the Data Update Rate ... 4-27
4.11 Hold and Single Measurement ... 4-29

Chapter 5 Power Measurement
5.1 Displaying Numeric Data and Changing the Displayed Items 5-1
5.2 Selecting the Voltage/Current Mode (RMS, MEAN, DC, or RMEAN) 5-9
5.3 Selecting the Frequency Measurement Source 5-10
5.4 Setting the User-Defined Function ... 5-12
5.5 Setting MAX hold ... 5-17
5.6 Measuring the Average Active Power ... 5-19
5.7 Setting the Equation for Efficiency .. 5-20
5.8 Setting the Wiring, Efficiency, and Two-Wattmeter Method Compensations 5-22
5.9 Setting the Equations for Apparent Power, Reactive Power, and Corrected Power 5-25
5.10 Selecting the Display Format of the Phase Difference 5-28
5.11 Integration .. 5-30
5.12 Setting the Manual Integration ... 5-35
5.13 Setting the Normal Integration and Repetitive Integration 5-38
5.14 Setting the Real-Time Integration and Real-Time Repetitive Integration 5-41
5.15 Turning ON/OFF the Integration Auto Calibration 5-45

Chapter 6 Waveform Display
6.1 Waveform Display .. 6-1
6.2 Selecting the Waveform to Be Displayed ... 6-3
6.3 Setting the Time Axis ... 6-5
6.4 Setting the Trigger ... 6-7
6.5 Zooming Vertically and Moving the Vertical Position 6-12
6.6 Waveform Display on Divided Windows ... 6-15
6.7 Selecting the Display Interpolation and Graticule 6-18
6.8 Turning ON/OFF the Scale Value and Waveform Label 6-21
6.9 Cursor Measurement .. 6-23

Chapter 7 Trend Display
7.1 Trend Display .. 7-1
7.2 Selecting the Trend Data to Be Displayed ... 7-3
7.3 Selecting the Trend Display Target .. 7-5
7.4 Setting the Time Axis .. 7-8
7.5 Setting the Scale .. 7-10
7.6 Displaying Trends on Divided Windows ... 7-12
7.7 Selecting the Display Interpolation and Graticule and Turning ON/OFF the Scale Value and Waveform Label .. 7-14
7.8 Restarting the Trend .. 7-16
7.9 Cursor Measurement .. 7-17
Chapter 8 Storing and Recalling Data and Saving the Stored Data
 8.1 Setting the Store Mode ... 8-1
 8.2 Setting the Numeric Data and Waveform Display Data to Be Stored 8-3
 8.3 Setting the Store Count, Store Interval, Store Reservation Time, and Alert Indication of Internal Memory Initialization ... 8-7
 8.4 Storing Data ... 8-11
 8.5 Saving the Stored Data ... 8-14
 8.6 Recalling the Stored Data .. 8-21

Chapter 9 Saving and Loading Data
 9.1 PC Card and USB Memory .. 9-1
 9.2 Formatting the Storage Media .. 9-3
 9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data ... 9-6
 9.4 Saving the Screen Image Data ... 9-20
 9.5 Loading Setup Parameters .. 9-24
 9.6 Specifying the File to Be Displayed, Displaying File Properties, and Selecting File Attributes .. 9-27
 9.7 Deleting Files .. 9-30
 9.8 Copying Files .. 9-33
 9.9 Renaming Files or Directories and Creating Directories 9-37

Chapter 10 Other Functions
 10.1 Zero-Level Compensation .. 10-1
 10.2 NULL Function ... 10-2
 10.3 Selecting the Sampling Frequency .. 10-4
 10.4 Selecting the Display Font .. 10-5
 10.5 Selecting the Screen Brightness .. 10-7
 10.6 Setting the Display Color .. 10-8
 10.7 Setting the Key Lock and Shift Lock Function 10-11
 10.8 Help Function .. 10-13
 △ 10.9 Master/Slave Synchronization Measurement 10-14

Chapter 11 Troubleshooting, Maintenance, and Inspection
 11.1 Troubleshooting ... 11-1
 11.2 Error Messages and Corrective Actions 11-2
 11.3 Self-Test ... 11-7
 △ 11.4 Checking the System Condition .. 11-9
 11.5 Replacing the Power Fuse ... 11-10
 11.6 Recommended Replacement Parts .. 11-11
Chapter 12 Specifications

12.1 Input Section ... 12-1
12.2 Display .. 12-2
12.3 Measurement Functions (Measurement Items) Related to Normal Measurement 12-3
12.4 Accuracy .. 12-5
12.5 Functions .. 12-9
12.6 Input/Output of the Master/Slave Synchronization Signal 12-13
12.7 External Clock Input .. 12-13
12.8 Storage ... 12-14
12.9 USB PERIPHERAL Interface ... 12-14
12.10 GP-IB Interface .. 12-15
12.11 Safety Terminal Adapter .. 12-15
12.12 General Specifications ... 12-16
12.13 External Dimensions .. 12-18

Appendix

Appendix 1 Symbols and Determination of Measurement Functions App-1
Appendix 2 List of Initial Settings and Display Order of Numeric Data App-4
Appendix 3 ASCII Header File Format ... App-13
Appendix 4 Power Basics (Power, Harmonics, and RLC of AC Circuits) App-16
Appendix 5 For Making Accurate Measurements ... App-24
Appendix 6 Setting the Measurement Period ... App-26
Appendix 7 Data Update Rate and Computing Equation App-33
Appendix 8 Compensation Function ... App-34
Appendix 9 Key Assignments of the USB Keyboard App-33
Appendix 10 Measurement Modes and Functional Limitations App-40
Appendix 11 Measurement Functions That Can Be Measured in Each Measurement Mode .. App-41
Appendix 12 Operands of User-Defined Functions That Can Be Used in Each Measurement Mode ... App-43
Appendix 13 Parameters in the Operands of User-Defined Functions App-45

Index
1.1 Front Panel, Rear Panel, and Top Panel

Front Panel

- **ESC key**
 - Clear a setup menu or dialog box.

- **Soft keys**
 - Selects items on the setup menu that appears on the screen.

- **PC card slot**
 - Used when saving data to a PC card. (See section 9.1)

- **Handle**
 - Use the handles (both sides) when moving the instrument. (See section 3.1)

- **USB port**
 - Connect a USB memory or USB keyboard.

- **Power switch.**
 - (See section 3.4)

- **Built-in printer (option)**
 - Used to print screen images. (See the Expansion Function User’s Manual IM760301-51E)

- **Setup Menu Display Key and Execution Key**
 - Keys that are pressed first when entering a setting or executing an operation. Press the setup menu display key to open various setup menus. Press an execution key to execute the operation assigned to that key. (See section 1.2)

- **SHIFT key**
 - The keys enter the shifted state when you press the SHIFT key and the SHIFT key illuminates. In this state, the setup menu marked in purple below the panel keys can be selected.

Rear Panel

- **Voltage input terminal**
 - Used to connect voltage measurement cables. (See sections 3.8 to 3.11)

- **External current sensor input connector**
 - Used to connect the external sensor cable from the external current sensor. (See section 3.10)

- **Current input terminal**
 - Used to connect current measurement cables. (See sections 3.8, 3.9, and 3.11)

- **Torque signal input connector (motor version)**
 - Receives signals from torque meters when evaluating motors. (See the Expansion Function User’s Manual IM760301-51E)

- **Revolution signal input connector (motor version)**
 - Receives signals from revolution sensors when evaluating motors. (See the Expansion Function User’s Manual IM760301-51E)

- **GP-IB connector**
 - (See the Communication Interface User’s Manual IM760301-17E (CD-ROM).)

- **RS-232 connector or USB port (for the PC) (Selectable option)**

- **External clock input connector**
 - Receives the synchronization source (signal) that defines the measurement/computation period. (See section 4.7)

- **External start signal output connector**
 - Used when performing master/slave synchronized measurement. (See section 10.8)

- **Power connector**
 - (See section 11.5)

- **Power fuse**
 - (See section 11.5)

- **RGB video signal (VGA) output connector (option)**
 - Outputs image signals. (See the Expansion Function User’s Manual IM760301-51E.)

- **D/A output connector (option)**
 - Outputs numeric data that has been converted to analog DC voltage. (See the Expansion Function User’s Manual IM760301-51E.)
Top Panel

Outlet holes (See section 3.2)

Handle

Inlet holes (See section 3.2)
(There are also inlet holes on the bottom panel.)
1.2 Setup Menu Display Key and Execution Key

Setting the Measurement Conditions

WIRING Key (See sections 4.1, 4.2, 5.7, and 5.8)
Displays a menu for selecting the wiring system, selecting independent setting of input elements, setting the computing equation for efficiency, setting the wiring compensation, setting the efficiency compensation, etc. When the wiring compensation or efficiency compensation is enabled, the COMPEN indicator illuminates.

SHIFT+WIRING (INPUT INFO.) Key (See sections 3.16 and 4.1)
Displays a list of conditions for receiving voltage/current signals and acquiring the signals as data such as the wiring system of each input element, wiring unit, measurement range, input filter, scaling, and synchronization source.

ELEMENT Key (See section 4.1 and 4.2)
- Selects the input element for setting the measurement range. The selected input element switches each time the ELEMENT key is pressed.
- Input elements that are assigned to the same wiring unit in the wiring system selection are selected simultaneously.

SHIFT+ELEMENT (ALL) Key (See section 4.1 and 4.2)
Collectively sets the voltage range or current range of all installed input elements. Pressing only the ELEMENT key again enables individual input elements to be configured.

▲ Key and ▼ Key (See section 4.3 and 4.4)
Selects the voltage range, the current range, or the current sensor range. The selected range is enabled when the AUTO key is not turned ON (manual range function).

AUTO Key (See section 4.3 and 4.4)
When the AUTO key is pressed and the AUTO indicator illuminates, the auto range function is enabled. The voltage range, current range, and current sensor range are automatically switched according to the amplitude of the input electric signal. Pressing the AUTO key again turns OFF the AUTO indicator and enables the manual range function.

EXT SENSOR Key (See section 4.4)
When the EXT SENSOR key is pressed and the “EXT SENSOR” indicator illuminates, the current sensor range for measuring the current sensor output on the WT3000 can be selected using the ▲ or ▼ key in the CURRENT RANGE section. Pressing the EXT SENSOR key again turns OFF the EXT SENSOR indicator and enables the selection of the current range for direct input.

SHIFT+EXT SENSOR (SENSOR RATIO) Key (See section 4.4)
Displays a menu for setting the current sensor transformation ratio for each input element. These transformation ratios are used to convert the current sensor output to current.
1.2 Setup Menu Display Key and Execution Key

- **SCALING Key (See section 4.5)**
 Displays a menu for setting the VT ratio, CT ratio, or power coefficient for each input element. These coefficients are used to convert the VT/CT output or the power derived from measuring the VT and CT outputs to the voltage, current, and power of the object being measured.

- **LINE FILTER Key (See section 4.8)**
 Displays a menu for setting the filter that is inserted into the measurement circuit within the WT3000 for each input element.

- **SHIFT+LINE FILTER (FREQ FILTER) Key (See section 4.8)**
 Displays a menu for setting the filter that is inserted into the frequency measurement circuit within the WT3000 for each input element.

- **AVG Key (See section 4.9)**
 Displays a menu for setting the function that calculates the average of measured values.

- **SYNC SOURCE Key (See section 4.7)**
 - Displays a menu for setting the synchronization source for each wiring unit. The synchronization source defines the period (measurement period) over which the sample data is acquired for determining the numeric data (measured values) such as voltage, current, and power.
 - If all elements are selected with the SHIFT+ELEMENT (ALL) key as explained on the previous page, the synchronization source of all input elements can be set collectively.

- **UPDATE RATE Key (See section 4.10)**
 Displays a menu for selecting the acquisition interval (data update rate) of the sampled data that is used to determine the numeric data (measured values) such as voltage, current, and power.

- **HOLD Key (See section 4.11)**
 When the HOLD key is pressed and the HOLD indicator illuminates, the measurement and display operation is aborted, and the numeric data display is held. Pressing the HOLD key again turns OFF the HOLD indicator and restarts the updating of the numeric data display.

- **SINGLE Key (See section 4.11)**
 If the SINGLE key is pressed while in the hold condition, the measurement is performed once at the specified data update rate and the WT3000 returns to the hold condition.
Displaying the Measured/Computed Results

- **MODE Key (See section 5.2)**
 Switches the voltage mode and current mode. The mode can be set to true rms value (RMS), rectified mean value calibrated to the rms value (MEAN), simple average (DC), or rectified mean value (RMEAN) for the voltage mode and current mode, separately.

- **NUMERIC Key (See section 3.15 and 5.1. For details on the harmonic measurement (/G6 or /G5 option), see the Expansion Function User’s Manual IM760301-51E.)**
 Displays the screen that shows the numeric data.
 - Pressing the ITEM key (explained later) while showing the numeric data opens a menu for changing the displayed items.
 - Pressing the FORM key (explained later) while showing the numeric data opens a menu for changing the number of displayed items. For harmonic measurement (/G6 or /G5 option), a list showing the measured values for each harmonic order can also be selected.

- **WAVE Key (See section 3.15 and 6.1 to 6.8)**
 Displays the screen that shows the waveform.
 - Pressing the ITEM key (explained later) while showing the waveform opens a menu for selecting the displayed waveform or a menu for zooming the waveform.
 - Pressing the FORM key (explained later) while showing the waveform opens a menu for setting the time axis of the displayed waveform, the trigger for displaying the waveform on screen, the number of divided waveform display windows, the assignment of waveforms to the divided windows, etc.

- **OTHERS Key (See section 3.15, 7.1 to 7.6, and 7.8. For details on bar graphs or vector displays (option), see the Expansion Function User’s Manual IM760301-51E.)**
 Displays a menu for selecting the screen that shows the trend, bar graph,*1 vector,*1 IEC harmonic measurement,*2 waveform computation,*2 FFT,*2 voltage fluctuation and flicker measurement,*3 and cycle-by-cycle measurement.*4

*1 Only on models with the /G6 or /G5 option.
*2 Only on models with the /G6 option.
*3 Only on models with the /FL option.
*4 Only on models with the /CC option.
1.2 Setup Menu Display Key and Execution Key

- **ITEM Key** (See section 5.1, 6.4, 6.5, 7.2, 7.3, and 7.6. For details on bar graphs and vector displays (option), see the Expansion Function User’s Manual IM760301-51E.)

 Displays a menu for selecting the displayed items according to the display type selected with the NUMERIC, WAVE, or OTHERS key on the previous page.

- **SHIFT+ITEM (LOWER ITEM) Key** (See section 5.1, 6.4, 6.5, 7.2, 7.3, and 7.6. For details on bar graphs and vector displays (option), see the Expansion Function User’s Manual IM760301-51E.)

 Displays a menu for selecting the displayed item on the bottom half of the display when two types of displays are displayed simultaneously on the top and bottom halves of the display using the setup menu shown with the OTHERS key on the previous page. The menu configuration is the same as when the bottom half of the display is shown by itself (full screen).

- **FORM Key** (See section 5.1, 6.2, 6.3, 6.6 to 6.8, 7.4, 7.5, and 7.8. For details on bar graphs and vector displays (option), see the Expansion Function User’s Manual IM760301-51E.)

 Displays a menu for selecting the display format according to the display type selected with the NUMERIC, WAVE, or OTHERS key on the previous page.

- **SHIFT+FORM (LOWER FORM) Key** (See section 5.1, 6.2, 6.3, 6.6 to 6.8, 7.4, 7.5, and 7.8. For details on bar graphs and vector displays (option), see the Expansion Function User’s Manual IM760301-51E.)

 Displays a menu for selecting the display format for the bottom half of the display when two types of displays are displayed simultaneously on the top and bottom halves of the display using the setup menu shown with the OTHERS key on the previous page. The menu configuration is the same as when the bottom half of the display is shown by itself (full screen).

- **U/I/P Key, S/Q/ Φ Key, WP/q/TIME Key, FU/FI/ η Key** (See section 5.1)

 Each time the U/I/P key is pressed, the measurement function of the displayed item at the cursor switches in the following order: U -> I -> P -> the measurement function before the U/I/P key was pressed -> U, and so on. The numeric data of the selected measurement function is displayed.

 - The above operation is carried out when numeric data is displayed and the menu is not displayed or the ITEM key has been pressed.
 - Only the measurement function switches.
 - The measurement function of U and I varies depending on the voltage mode or current mode. For example, if the voltage mode is set to RMS, Urms and its numeric data are displayed.
 - When the S/Q/ Φ key, WP/q/TIME key, or FU/FI/ η key is pressed, the measurement function also switches in order similar to the U/I/P key.
1.2 Setup Menu Display Key and Execution Key

- **USER Key (See section 5.1)**
 Each time the USER key is pressed, the measurement function of the displayed item at the cursor switches to the preset (user-defined) measurement function, and the numeric data of the selected measurement function is displayed.
 - The above operation is carried out when numeric data is displayed and the menu is not displayed or the ITEM key has been pressed.
 - Up to four measurement functions can be preset (user defined).
 - After displaying the user-defined measurement functions, the measurement function that was displayed before the USER key was pressed is shown.
 - Only the measurement function switches.

- **SHIFT+USER (USER SET) Key (See section 5.1)**
 Displays a menu for registering (defining) the measurement functions that you wish to display when the USER key is pressed.

- **ELEMENT Key (See section 5.1)**
 Each time the ELEMENT key is pressed on models with four input elements installed, the input element or wiring unit of the displayed item at the cursor switches in the following order: 1 -> 2 -> 3 -> 4 -> ΣA -> ΣB -> 1, and so on. The numeric data of the selected input element or wiring unit is displayed.
 - The above operation is carried out when numeric data is displayed and the menu is not displayed or the ITEM key has been pressed.
 - Only the input element or wiring unit switches.
 - The input element or wiring unit that is displayed varies depending on the number of input elements that are installed in the WT3000 or the selected wiring system.

- **SHIFT+ELEMENT (ALL) Key (See section 5.1)**
 If the ALL indicator is illuminated by pressing the SHIFT+ELEMENT (ALL) key on models with four input elements installed, each time the ELEMENT key is pressed, the input elements or wiring units displayed on one page switches in the following order: 1 -> 2 -> 3 -> 4 -> ΣA -> ΣB -> 1, and so on. The numeric data of the selected input elements or wiring units is displayed. If the SHIFT+ELEMENT (ALL) key is pressed again the ALL indicator turns OFF, and the function for switching the input elements or wiring units displayed on one page is released.
 - The above operation is carried out when numeric data is displayed and the menu is not displayed or the ITEM key has been pressed.
 - Only the input element or wiring unit switches.
 - The input element or wiring unit that is displayed varies depending on the number of input elements that are installed in the WT3000 or the selected wiring system.

- **MEASURE Key (See section 5.4 to 5.6, 5.9, 5.10, 10.3, and 10.9)**
 Displays a menu for setting the user-defined functions, setting the MAX hold function, setting the average active power, setting the computing equation for apparent/reactive power, setting the computing equation for corrected power, selecting the display format of phase difference, selecting the sampling frequency, setting the master/slave synchronized measurement, and so on.

- **SHIFT+MEASURE (CURSOR) Key (See section 6.9 and 7.7. For details on bar graphs (option), see the Expansion Function User’s Manual IM760301-51E.)**
 Displays a menu for measuring values with cursors when waveforms, trends, or bar graphs (harmonic measurement option) are displayed.
1.2 Setup Menu Display Key and Execution Key

Integration, D/A Output (Option), Motor Evaluation (Motor Version), and Harmonic Measurement (Option)

- **INTEG Key** (See section 5.11 to 5.14. For details on the rated time of integrated D/A output (option), see the Expansion Function User’s Manual IM760301-51E.)
 Displays a menu for setting the integration mode, integration timer, reservation time, integration auto calibration, integration start/stop/reset, and rated time of integrated D/A output (option).

- **SHIFT+SCALING (MOTOR SET) Key** (See the Expansion Function User’s Manual IM760301-51E)
 Displays a menu for setting the motor evaluation function.

- **HRM SET Key** (See the Expansion Function User’s Manual IM760301-51E)
 Displays a menu for setting the harmonic measurement function.

Storing/Recalling Data, Saving/Loading Data, and Printing on the Built-in Printer

- **STORE Key** (See section 8.4)
 Starts or stops the store operation or clears the internal memory.

- **SHIFT+STORE (STORE SET) Key** (See section 8.1 to 8.3, 8.5, and 8.6)
 Displays the store and recall setup menu.

- **FILE Key** (See section 9.1 to 9.3, and 9.5 to 9.9)
 Displays a menu for formatting the external storage medium, saving/loading setup parameters, saving measured data, changing file attributes, deleting files, copying files, renaming directories/files, creating directories, etc.

- **IMAGE SAVE Key** (See section 9.4)
 Saves the screen image data.
1.2 Setup Menu Display Key and Execution Key

- **SHIFT+IMAGE SAVE (MENU) Key (See section 9.4)**
 Displays a menu for setting the file name, data format, color mode, data compression, and comment shown on the display when saving the screen image data.

- **PRINT Key (See the Expansion Function User’s Manual IM760301-51E)**
 Prints the screen image data or numeric data list.

- **SHIFT+PRINT (MENU) Key (See the Expansion Function User’s Manual IM760301-51E)**
 Displays menu for setting the print destination, setting the print format, setting the comment, setting the auto print function, feeding the paper, and etc.

Other Functions

- **SHIFT+SINGLE (CAL) Key (See section 10.1)**
 Executes zero-level compensation. Creates a zero input condition inside the WT3000 and sets the level at that point as the zero level.

- **SHIFT+SYNC SOURCE (NULL) Key (See section 10.2)**
 When the SHIFT+SYNC SOURCE (NULL) key is pressed and the NULL indicator illuminates, the NULL function, which subtracts the DC component of the measurement circuit from the sampled data, is activated. Pressing the SHIFT+SYNC SOURCE (NULL) key again turns OFF the NULL indicator and the NULL function is deactivated.

- **MISC Key (See section 3.12, 3.13, 3.17, 4.6, 10.4 to 10.7, 11.3, and 11.4)**
 For details on the D/A output, RS-232 communication, and Ethernet communication, see the Expansion Function User’s Manual IM760301-51E.) Display a menu for setting the date/time, initializing setup parameters, selecting the message language, selecting the menu language, selecting the crest factor, selecting the display font, selecting the display brightness, setting the display color, setting key lock and shift lock, setting the self-test function, checking the system status, setting the D/A output (option), setting the remote control function (through the communication protocol of GP-IB/RS-232 (option)/Ethernet (option)) using communication commands, setting the Ethernet communication LAN function (option), etc.

- **HELP key (See section 10.8)**
 Displays a help window that provides information about the setup menu that is displayed.

- **LOCAL Key (See the Communication Interface User’s Manual IM760301-17E (CD-ROM))**
 Switches the WT3000 from remote mode (REMOTE indicator illuminated) to local mode (enable front panel key operation on the WT3000). However, the key is invalid when the WT3000 is in local lockout mode.
1.3 Display Screen

Screen Example When Measuring Power (Numeric Display) in Normal Measurement Mode

For a description of the screens in other measurement modes and display modes other than power measurement (numeric display), see the respective chapters covering each mode.

Displays Other than Values

---OL--- Over-range display
Displayed if the measured value exceeds 140% of the measurement range.

---OF--- Overflow display
Displayed if the measured or computed result cannot be displayed using the specified decimal position or unit.

-------- No data display
Displayed if a measurement function is not selected or if no numeric data is present.

Error Error display
Displayed such as when the measured value is outside a given range.
Chapter 2 Functional Description

2.1 System Configuration and Block Diagram

System Configuration

- Power supply
- VT
 - Voltage (Input either one)
- CT
 - Current (Input either one)
- Motor
- Load
- Motor evaluation (Motor version)
- Torque meter
- Revolution sensor
- Input element
- External clock input
- Master/slave sync signal
- Measurement start/stop
- Setup parameters
- Numeric data
- Waveform display data
- Screen image data
- Store data
- PC card/USB memory (option)
- D/A output (option)
 - Output the measured values as analog voltage
- Network printer
- CRT
- Recorder
- Ethernet interface (option)
 - Screen image/numeric data list
- USB keyboard (option)
- GP-IB interface/RS-232 interface (option)/Ethernet interface (option)/USB interface (option)
 - Setup parameters
 - Numeric data
 - Waveform display data
 - Screen image data
- Built-in printer (option)
 - Print screen image data/numeric data list
- Internal memory
 - Store numeric data and waveform display data
 - Recall numeric data and waveform display data
- Built-in printer (option)
 - Print screen image data/numeric data list
2.1 System Configuration and Block Diagram

Block Diagram

Input Signal Flow and Process

The input elements 1 through 4, consist of a voltage input circuit and a current input circuit. The input circuits are mutually isolated. They are also isolated from the case.

The voltage signal that is applied to the voltage input terminal \((U, \pm)\) is normalized using the voltage divider of the voltage input circuit and an operational amplifier (OP AMP). It is then input to a voltage A/D converter.

The current input circuit is equipped with two types of input terminals, a current input terminal \((I, \pm)\) and a current sensor input connector (EXT). Either one can be used at any given time. The voltage signal from the current sensor that is received at the current sensor input connector is normalized using the voltage divider and an operational amplifier (OP AMP). It is then input to a current A/D converter. The current signal that is applied to the current input terminal is converted to a voltage. Then, it is input to the current A/D converter in the same fashion as the voltage signal from the current sensor.

The voltage signal that is input to the voltage A/D converter or current A/D converter is converted to digital values at an interval of approximately 5 \(\mu\)s. The digital values are isolated by the pulse transformer and passed to the DSP. In the DSP, the measured values are derived based on the digital values. The measured values are then transmitted to the CPU. Various computed values are determined from the measured values. These measured values and computed values are displayed as measurement functions of normal measurement, output through a D/A converter, or output through communications.

The measurement functions of harmonic measurement (option) are derived in the following manner. The voltage signal input to the A/D converter is converted to digital values at a sampling frequency that is determined by the PLL source signal. The measured value of each item of harmonic measurement is derived by performing an FFT based on the converted digital values using the DSP.
2.2 Measurement Modes and Measurement Functions

Measurement Modes

The normal measurement mode on the WT3000 allows you to measure voltage, current, power, etc. If the advanced computation (/G6) option is installed, measurements can be performed in a mode specific to each of the functions listed below in addition to the normal measurement mode. Switch the measurement mode according to your application.

- **Normal Measurement Mode (Normal Mode)**
 This mode is used to measure voltage, current, power, and integrated values. If the /G6 option is installed, harmonic measurement*1 as well as bar graph and vector displays become available in normal measurement mode.
 *1 Equivalent to the /G5 (harmonic measurement) option. This harmonic measurement does not conform to IEC61000-3-2.

- **Wide Bandwidth Harmonic Measurement Mode (Wide-Band Harmonics Mode) (/G6 Option)**
 Harmonic measurement up to 50th order can be performed on a signal with a 1-kHz fundamental frequency. Use this mode for harmonic measurement of signals whose fundamental frequency is higher than the commercial power supply frequency.

- **IEC Harmonic Measurement Mode (IEC Harmonics Mode) (/G6 Option)**
 This mode in combination with the Harmonic/Flicker Measurement Software (761922) sold separately allows you to perform harmonic measurement conforming to IEC61000-3-2. Use this mode to check that the harmonics of electric home appliances and office automation equipment comply with the IEC standards.

- **Waveform Computation Mode (Math Mode) (/G6 Option)**
 This mode allows you to perform various computations on the waveform sampling data of the input signal. For example, the waveform sampling data of the voltage and current input signals can be multiplied together to display the waveform of instantaneous power.

- **FFT Mode (/G6 Option)**
 This mode allows the power spectrum of the input signal to be displayed through FFT (fast Fourier transform). Use this mode to check the frequency distribution of the input signal.

- **Voltage Fluctuation and Flicker Measurement Mode (Flicker Mode) (/FL Option)**
 This mode allows you to perform voltage fluctuation and flicker measurements conforming to IEC61000-3-3. You can use the Harmonic/Flicker Measurement Software for the WT3000 (761922) to execute measurements or set measurement conditions from a PC and create a report of measurement results.

- **Cycle-by-Cycle Measurement Mode (/CC Option)**
 This mode allows the voltage, current, power, and other parameters for each cycle of the AC input signal to be measured.
2.2 Measurement Modes and Measurement Functions

The selectable displays and main functions of each measurement mode are given below.
For a list of selectable functions, see appendix 10.

<table>
<thead>
<tr>
<th>Measurement Mode</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
<th>Voltage Fluctuation and Flicker</th>
<th>Cycle by Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>None</td>
<td>/G6, /G5</td>
<td>/G6</td>
<td>/G6</td>
<td>/G6</td>
<td>/FL</td>
<td>/CC</td>
</tr>
<tr>
<td>Display</td>
<td>Numeric</td>
<td>Yes</td>
<td>Yes</td>
<td>Limit*1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Waveform</td>
<td>Yes</td>
<td>Yes</td>
<td>No*2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Trend</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Bar graph</td>
<td>No</td>
<td>Yes</td>
<td>No*3</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Waveform computation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FFT</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flicker</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Cycle by Cycle</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Data update rate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No*3</td>
</tr>
<tr>
<td>Integration</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Motor</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>D/A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Delta computation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

*1 The rms values of the voltage or current are the total of the specified harmonic components, not the values that include all frequency components.
*2 Can be monitored using the IEC harmonic measurement software.
*3 Fixed to 2 s.

- **Differences in the Harmonic Measurement of Each Measurement Mode**
 In IEC harmonic measurement mode, limitation is placed on a portion of the functions of the WT3000 as compared with the harmonic measurement in normal measurement mode due to the measurement conditions and constraints in the standard. For details, see the table above. During the development or inspection of a device, you can use the harmonic measurement in normal measurement mode to measure simultaneously the rms voltage, the rms current, the power, and harmonics in a simplified manner. To strictly evaluate whether the device complies with the IEC standard, you can use the IEC harmonic measurement mode. When measuring the harmonics of a high frequency power supply whose fundamental frequency is in the order of hundred Hertz, use the wide bandwidth harmonic measurement mode.
Measurement Functions

The physical values such as rms voltage, average current, power, and phase difference that the WT3000 measures and displays are called measurement functions. Each measurement function is displayed using a symbol corresponding to the respective physical value. For example, “Urms” represents the true rms value of the voltage.

Elements

Element refers to a set of input terminals that can input a single phase of voltage and current to be measured. The WT3000 can contain up to four elements, which are numbered from 1 to 4. An element number is appended to the measurement function symbol for the measured data that the WT3000 displays, so that the correspondence between the numeric data and the element can be seen. For example, “Urms1” represents the true rms value of the voltage of element 1.

Wiring System

You can specify five wiring systems—single-phase, two-wire; single-phase, three-wire; three-phase, three-wire; three-phase, four-wire; and three-phase, three-wire (three-phase, three current)—on the WT3000 to measure the power of various single-phase and three-phase power transmission systems. For details, see section 2.3.

Wiring Unit

A wiring unit refers to a set of two or three input elements of the same wiring system that are grouped to measure three-phase power. Depending on the wiring system pattern (see section 2.3), up to two wiring units can be constructed, which are represented by symbols \(\Sigma \text{A} \) and \(\Sigma \text{B} \). The measurement function of a wiring unit is called a \(\Sigma \) function. For example, “Urms\(\Sigma \text{A} \)” represents the true rms value of the average of the voltage of the input elements that are assigned to wiring unit \(\Sigma \text{A} \).

- **Configuration example of wiring systems and wiring units**

![Configuration example of wiring systems and wiring units diagram]

- Voltage input
- Current input
- Three-phase, three-wire
- Wiring system \(\Sigma \text{A} \)
- Wiring unit \(\Sigma \text{B} \)
Types of Measurement Functions during Normal Measurement

The data (numeric data) of measurement functions is measured or computed from the sampled data*1 described in “Measurement Period” on page 2-7.

*1 The WT3000 samples the instantaneous values of the voltage and current signals at a specified sample rate*2. The sampled data is processed as numeric data or data used to display waveforms on the screen (waveform display data).

*2 Sample rate represents the number of data points that are sampled within 1 s. For example, at a sample rate of 200 kS/s, 200000 data points are sampled every second.

• Types of Measurement Functions
 • Measurement Functions on Each Input Element
 The following 22 measurement functions are available. For details related to the determination of measurement function data, see “Appendix 1.”
 U (voltage Urms, Umn, Udc, Urmn), I (current Irms, Imn, Idc, Irmn), P (active power), S (apparent power), Q (reactive power), λ (power factor), φ (phase difference), fU/fI (also expressed as fU: FreqU and fI: FreqI, measures the frequencies of up to two voltage/current signals*3), U+pk/U-pk (maximum/minimum values of voltage), I+pk/I-pk (maximum/minimum values of current), CfU/CfI (crest factor of voltage/current), Pc (Corrected Power)

*3 The frequencies of voltage and current on all input elements can be measured on models with the frequency measurement add-on option.

• Measurement Functions of Wiring Units ΣA and ΣB (Σ Functions)
 The following 14 measurement functions are available. For details related to the determination of measurement function data, see “Appendix 1.”
 UΣ (voltage average UrmsΣ, UmnΣ, UdcΣ, UrmnΣ), IΣ (current average IrmsΣ, ImnΣ, IdcΣ, IrmnΣ), PΣ (sum of active powers), SΣ (sum of apparent powers), QΣ (sum of reactive powers), λΣ (power factor average), φΣ (phase difference average), PcΣ (sum of corrected powers)

• Efficiency (Σ Functions), User-Defined Function
 Four efficiency functions η1 to η4 are available. 20 user-defined functions, F1 to F20, are available. See section 2.5.

• Measurement Functions of Integration
 See section 2.6.

• Delta Computation (Option)
 Four delta functions, ΔF1 to ΔF4, are available. See the Expansion Function User’s Manual IM760301-51E.

Types of Measurement Functions for Harmonic Measurement (Option)

Harmonics can be measured on models with the advanced computation (/G6) option. Harmonic measurement consists of three types: harmonic measurement in normal measurement mode, wide bandwidth harmonic measurement, and IEC harmonic measurement. In addition, the rms voltage and current consist of two types: normal measurement value and total value. For details, see the Extension Function User’s Manual IM760301-51E.
Types of Measurement Functions of the Motor Evaluation Function (Motor Version)

By using the motor evaluation function (motor version), the rotating speed, torque, and output of a motor can be determined from the DC voltage (analog signal) or pulse count signal received from a revolution sensor, which is proportional to the rotating speed of the motor, and the DC voltage (analog signal) or pulse count signal received from a torque meter, which is proportional to the motor's torque. In addition, the synchronous speed and slip of a motor can be determined by setting the motor’s number of poles. Furthermore, the active power and frequency that are measured by the WT3000 and the motor output can be used to compute the motor efficiency and the total efficiency. For details, see chapter 1, “Motor Evaluation Function (Motor Version)” in the Expansion Function User’s Manual IM760301-51E.

Voltage Mode and Current Mode

You can select equations for voltage (U) and current (I) from the following:

- **Urms, Irms (True Rms Value)**
 These values are the true rms values of the voltage and current. The instantaneous values over one period are squared and averaged. Then, the square root of the value is determined. \(f(t) \) and \(T \) represent the input signal as a function of time and the period of the input signal, respectively.

\[
\text{Urms or Irms} = \sqrt{\frac{1}{T} \int_0^T (f(t))^2 \, dt}
\]

- **Umn, Imn (Rectified Mean Value Calibrated to the Rms Value)**
 This function rectifies one period of the voltage or current signal, determines the average, and multiplies the result by a coefficient. The coefficient is a value that when applied to a sinusoidal input signal, gives the true rms value. When the input signal is a distorted or is a DC waveform, these values will differ from the true rms values. \(f(t) \) and \(T \) represent the input signal as a function of time and the period of the input signal, respectively.

\[
\text{Umn or Imn} = \frac{\pi}{2\sqrt{2}} \frac{1}{T} \int_0^T |f(t)| \, dt
\]

- **Udc, Idc (Simple Average, DC)**
 These are the average values over one period of the voltage and current signal. This function is useful when determining the average value of a DC input signal or a DC component that is superimposed on an AC input signal.

\[
\text{Udc or Idc} = \frac{1}{T} \int_0^T f(t) \, dt
\]

- **Urmn, Irmn (Rectified Mean Value)**
 This function rectifies one period of the voltage or current signal and determines the average.

\[
\text{Urmn or Irmn} = \frac{1}{T} \int_0^T |f(t)| \, dt
\]

The WT3000 may use an averaging process through digital filter computation in addition to the averaging method using the equations above to derive the measured values of voltage (U) and current (I). For details, see “Data Update Interval” on page 2-14.
Measurement Period

• **Measurement Functions of Normal Measurement**

 The measurement period varies depending on the data update rate (see section 2.3) as follows:

 • **When the Data Update Rate Is 50 ms, 100 ms, 5 s, 10 s, or 20 s**

 • The measurement period is set between the first point where the reference input signal (synchronization source) crosses the level zero point (center of the amplitude) on the rising slope (or falling slope)\(^1\) within the data update interval\(^2\) and the last point where the synchronization source crosses the level zero point (center of the amplitude) on the rising slope (or falling slope) within the data update interval. However, the measurement period for determining the numeric data of the peak voltage or peak current is the entire span within the data update interval. Therefore, the measurement period for the measurement functions U\(+\)pk, U\(-\)pk, I\(+\)pk, I\(-\)pk, CfU, and CfI that are determined from the maximum value of the voltage and current is also the entire span within the data update period.

 • The rising or falling edge is automatically selected for the one that allows the interval to be longer.

 • If the number of rising slope or falling slope is less than or equal to 1 within the data update interval, the measurement period is set to the entire span within the data update interval.

 • You can select which input signal will be the synchronization source (synchronized to the zero-crossing point of the input signal) for each element. You can set the synchronization source signal to the voltage, current, or external clock that is input to the element.

 • For details, see appendix 6.

 \(^1\) Trigger slope refers to the movement of the signal from a low level to a high level (rising edge) or from a high level to a low level (falling edge).

 \(^2\) The data update interval is the interval by which the data is sampled for determining the measurement functions. This is equivalent to the value you can specify in “Data Update Rate” of section 2.3.

- **When the data update rate is 250 ms, 500 ms, 1 s, or 2 s**

 The measurement period is within the data update interval.

• **Measurement Functions of Harmonic Measurement**

 The measurement period is the first 9000 points from the beginning of the data update interval at the harmonic sampling frequency.

• **FFT**

 The measurement period is over the number of FFT points (200,000 points or 20,000 points) at a sampling frequency of 200 KHz. Thus, the measurement period is as follows:

<table>
<thead>
<tr>
<th>Number of Computed Points</th>
<th>Measurement Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000</td>
<td>1 s</td>
</tr>
<tr>
<td>20,000</td>
<td>100 ms</td>
</tr>
</tbody>
</table>

2.3 Measurement Conditions

Number of Installed Input Elements and Wiring Systems
«For procedures, see section 4.1.»

Wiring System

- There are five wiring systems available on the WT3000.
 1P2W: Single-phase, two-wire system
 1P3W: Single-phase, three-wire system
 3P3W*: Three-phase, three-wire system
 3P4W: Three-phase, four-wire system
 3P3W* (3V3A): Three voltage, three current system

 * In this manual, the symbolic expression 3P3W is used to indicate both three-phase, three-wire system and three-voltage, three-current system. To differentiate between the two, three-voltage, three-current system is expressed as 3P3W (3V3A).

- Limitations are placed on the wiring systems that can be selected depending on the number of input elements that are installed in the instrument.

Wiring Unit

A wiring unit refers to a set of two or three input elements of the same wiring system that are grouped. Up to two wiring units can be defined, each represented by the symbol ΣA and ΣB.

For example, “UrmsΣA” represents the true rms value of the average of the voltage of the input elements that are assigned to wiring unit ΣA.

Wiring System Pattern

- The following table shows the relationship between the number of installed input elements, the selectable wiring system patterns, and the assignment of input elements to wiring units ΣA or ΣB.

 For example, there are seven wiring system patterns on a WT3000 that has four input elements installed.

 - The input element assignment to wiring units ΣA or ΣB is determined from the wiring system pattern. This allows Σ functions of voltage, current, active power, apparent power, reactive power, power factor, phase difference, and other parameters to be determined. For the relationship between the wiring system and the determination of the Σ function, see appendix 1.

<table>
<thead>
<tr>
<th>Installed input elements</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring system Pattern 1</td>
<td>1P2W</td>
</tr>
<tr>
<td>Installed input elements</td>
<td>1</td>
</tr>
<tr>
<td>Wiring system Pattern 1</td>
<td>1P2W</td>
</tr>
<tr>
<td>Wiring system Pattern 2</td>
<td>1P3W or 3P3W: ΣA</td>
</tr>
<tr>
<td>Installed input elements</td>
<td>1</td>
</tr>
<tr>
<td>Wiring system Pattern 1</td>
<td>1P2W</td>
</tr>
<tr>
<td>Wiring system Pattern 2</td>
<td>1P3W or 3P3W(3V3A): ΣA</td>
</tr>
<tr>
<td>Wiring system Pattern 3</td>
<td>1P2W</td>
</tr>
<tr>
<td>Wiring system Pattern 4</td>
<td>3P4W or 3P3W(3V3A): ΣA</td>
</tr>
<tr>
<td>Wiring system Pattern 1</td>
<td>1P2W</td>
</tr>
<tr>
<td>Wiring system Pattern 2</td>
<td>1P3W or 3P3W: ΣA</td>
</tr>
<tr>
<td>Wiring system Pattern 3</td>
<td>1P2W</td>
</tr>
<tr>
<td>Wiring system Pattern 4</td>
<td>1P2W</td>
</tr>
<tr>
<td>Wiring system Pattern 5</td>
<td>1P3W or 3P3W: ΣA</td>
</tr>
<tr>
<td>Wiring system Pattern 6</td>
<td>3P4W or 3P3W(3V3A): ΣA</td>
</tr>
<tr>
<td>Wiring system Pattern 7</td>
<td>1P2W</td>
</tr>
</tbody>
</table>
2.3 Measurement Conditions

Measurement Range «For procedures, see section 4.3.»
Set the measurement range using an rms level. When directly applying voltage or
current signals to the input element, two types of measurement ranges is available, fixed
range and auto range. When waveforms are displayed, the vertical display range
-corresponds to 3 or 6 times the measurement range when the crest factor (see section
4.6) is set to 3 or 6, respectively. For details on waveform display, see section 2.7,
“Waveform Display.”

- Fixed Range
Select each range from a number of choices. The selected range does not switch
even if the amplitude of the input signal changes. For voltage, the maximum and
minimum selectable ranges are 1000 V and 15 V, respectively, when the crest factor
is set to 3. When the crest factor is set to 6, the maximum and minimum selectable
ranges are 500 V and 7.5 V, respectively.

- Auto Range
The measurement range switches automatically depending on the amplitude of the
input signal. The different ranges used in the auto range are the same as those
available for fixed range.

- Range Increase
 - When the data of measurement function Urms or Irms exceeds 110% of the
current measurement range, the measurement range is increased.
 - When the peak value of the input signal exceeds 330% or 660% of the current
measurement range when the crest factor is set to 3 or 6, respectively, the
range is increased.

- Range Decrease
When the data of the measurement function Urms or Irms is less than or equal to
30% of the measurement range and Upk and Ipk is less than or equal to 300% or
600% of the next lower range when the crest factor is set to 3 or 6, respectively,
the range is decreased.

- Power Range
The measurement ranges (power ranges) of active power, apparent power, and
reactive power are determined by the wiring method, voltage range, and current range
as shown below. For the actual values of the power range, see section 4.3, “Setting
the Measurement Range during Direct Input.”

<table>
<thead>
<tr>
<th>Wiring System</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1P2W (single-phase, two-wire)</td>
<td>voltage range × current range</td>
</tr>
<tr>
<td>1P3W (single-phase, three-wire)</td>
<td>voltage range × current range × 2</td>
</tr>
<tr>
<td>3P3W (three-phase, three-wire)</td>
<td>(when the voltage and current ranges on the</td>
</tr>
<tr>
<td></td>
<td>corresponding elements are set to the same range)</td>
</tr>
<tr>
<td>3P5W (3V3A, three-voltage, three-current)</td>
<td>voltage range × current range × 3</td>
</tr>
<tr>
<td></td>
<td>(when the voltage and current ranges on the</td>
</tr>
<tr>
<td></td>
<td>corresponding elements are set to the same range)</td>
</tr>
</tbody>
</table>
2.3 Measurement Conditions

Scaling «For procedures, see sections 4.4 and 4.5.»

When applying current signals via an external current sensor or applying voltage or current signals via the external VT (voltage transformer) or CT (current transformer), the transformation ratio or coefficient can be specified.

- When Applying Current Signals via an External Current Sensor

 The output of current sensors that output voltage, such as shunts and clamps, can be input to the current sensor connector (EXT) and measured. Set how many millivolts the current sensor outputs when 1 A of current flows (transformation ratio). Then, the input signal can be made to correspond to the numeric data or waveform display data that are obtained when the current is directly applied to the input terminals.

<table>
<thead>
<tr>
<th>Measurement Function</th>
<th>Transformation Ratio</th>
<th>Data before Transformation</th>
<th>Transformation Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current I</td>
<td>E</td>
<td>I_B (current sensor output)</td>
<td>I_B/E</td>
</tr>
<tr>
<td>Active power P</td>
<td>E</td>
<td>P_S</td>
<td>P_S/E</td>
</tr>
<tr>
<td>Apparent power S</td>
<td>E</td>
<td>S_S</td>
<td>S_S/E</td>
</tr>
<tr>
<td>Reactive power Q</td>
<td>E</td>
<td>Q_S</td>
<td>Q_S/E</td>
</tr>
<tr>
<td>Max./Min. current value Ipk</td>
<td>E</td>
<td>Ipk_E (current sensor output)</td>
<td>Ipk_E/E</td>
</tr>
</tbody>
</table>

- When Applying Voltage or Current Signals via an External VT or CT

 - VT ratio and CT ratio

 The input signal can be converted into numeric data or waveform display data of the voltage or current before transformation by setting the VT ratio, CT ratio, and power coefficient (coefficient multiplied to the power determined from the voltage and current).

 - Power factor

 You can multiply a coefficient to the measured active power, apparent power, and reactive power to be displayed by setting a power factor (SF).

<table>
<thead>
<tr>
<th>Measurement Function</th>
<th>Data before Transformation</th>
<th>Transformation Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U</td>
<td>U_2 (secondary output voltage of the VT)</td>
<td>U_2×V</td>
</tr>
<tr>
<td>Current I</td>
<td>I_2 (secondary output of the CT)</td>
<td>I_2×C</td>
</tr>
<tr>
<td>Active power P</td>
<td>P_2</td>
<td>P_2×C×SF</td>
</tr>
<tr>
<td>Apparent power S</td>
<td>S_2</td>
<td>S_2×C×SF</td>
</tr>
<tr>
<td>Reactive power Q</td>
<td>Q_2</td>
<td>Q_2×C×SF</td>
</tr>
<tr>
<td>Max./Min. voltage value Upk</td>
<td>Upk_2 (secondary output of the VT)</td>
<td>Upk_2×V</td>
</tr>
<tr>
<td>Max./Min. current value Ipk</td>
<td>Ipk_2 (secondary output of the CT)</td>
<td>Ipk_2×C</td>
</tr>
</tbody>
</table>

Crest Factor «For procedures, see section 4.6.»

The crest factor is defined as the ratio of the peak value of the waveform to the rms value.

\[
\text{Crest factor (CF)} = \frac{\text{Peak value}}{\text{Rms value}}
\]

The crest factor on the WT3000 is determined by the maximum peak value that can be applied for rated input in terms of a multiplication factor.

\[
\text{Crest factor (CF)} = \frac{\text{Peak value that can be input}}{\text{Measurement range}}
\]
2.3 Measurement Conditions

The crest factor can be set to 3 or 6 on the WT3000. The measurable crest factor is as
follows:

\[
\text{Crest factor (CF)} = \frac{\text{measurement range} \times \text{CF setting (3 or 6)}}{\text{Measured value (rms value)}}
\]

* However, the peak value of the input signal must be less than or equal to the maximum
allowable input.

If the crest factor of the measured signal is greater than the specifications of the
measurement instrument (the crest factor defined at the rated input), the signal can be
measured by setting a greater measurement range.

For example, even if CF is set to 3, measurement is possible for signals with a crest
factor greater than 5 when the measured value (rms value) is less than 60% of the
measurement range.

If the minimum effective input (1% of the measurement range) is being applied at CF = 3,
measurement for CF = 300 is possible.

The voltage range, current range, effective input range, and measurement accuracy vary
depending on the crest factor setting. For details, see chapter 12, “Specifications.”

Input Filter «For procedures, see section 4.8.»

There are two types of input filters. The WT3000 makes measurements by synchronizing
to the input signal. Therefore, the frequency of the input signal must be measured
accurately.

- **Line Filter**
 The line filter is inserted into the voltage, current, and power measurement input
circuit and directly affects the voltage, current, and power measurements (see the
block diagram in section 2.1). When the line filter is turned ON, the measured value
does not contain high frequency components. Measurement of voltage, current, and
power is possible by eliminating high frequency components from inverter waveforms,
strain waveforms, etc. The cutoff frequency is selectable.

- **Frequency Filter**
 The frequency filter is inserted into the frequency measurement input circuit and
affects frequency measurements. If the display update rate of the WT3000 is set to 50
ms, 100 ms, 5 s, 10 s, or 20 s, it affects the detection of the measurement period for
voltage, current, and power measurements (see section 4.7 and appendix 6). In
addition, if the data update rate is as indicated above, the frequency filter is also used
to accurately detect the zero crossing (see section 2.2 and appendix 6). The
frequency filter is not inserted into the voltage, current, and power measurement input
circuit. Therefore, the measured values include high frequency components even
when the frequency filter is turned ON.
Averaging «For procedures, see section 4.9.»

The averaging function is effective when reading of the numeric display is difficult due to fluctuations. This occurs when the fluctuation of the power supply or the load is large or when the input signal frequency is low.

- **Measurement Functions of Normal Measurement**
 Two types, exponential average and moving average, are available.

- **Exponential Average**
 The numeric data can be exponentially averaged using a specified attenuation constant. Averaging is performed according to the following equation.

\[
D_n = D_{n-1} + \left(\frac{M_n - D_{n-1}}{K} \right)
\]

- **Moving Average**
 The numeric data can be linearly averaged using a specified average count. Averaging is performed according to the following equation.

\[
D_n = \frac{M_{n-(m-1)} + \cdots + M_{n-2} + M_{n-1} + M_n}{m}
\]

- **Measurement Functions of Harmonic Measurement**

 - **Harmonic Measurement in Normal Measurement Mode**
 When averaging is turned ON, averaging is performed on the measurement functions of harmonic measurement when exponential averaging (above) is specified.
 If averaging is set to moving average, averaging is performed only on the measurement functions of normal measurement and not the measurement functions of harmonic measurement.

 - **Measurement Functions of Wide Bandwidth Harmonic Measurement Mode**
 Performs exponential averaging. The attenuation constant can be selected from above.

 - **Measurement Functions of IEC Harmonic Measurement Mode**
 Performs exponential averaging. The attenuation constant cannot be selected.

 - **Measurement Functions of Voltage Fluctuation and Flicker Measurement Mode and Cycle-by-Cycle Measurement Mode**
 Averaging is not performed. The average setting is invalid.
2.3 Measurement Conditions

Data Update Interval «For the procedure, see section 4.10.»

- Limitation on the Data Update Rate by Measurement Modes
 - Normal Measurement Mode, Waveform Computation Mode, and FFT Mode
 The data update rate setting is valid. However, the display update interval in waveform computation mode and FFT mode is the data update rate + computation time.

 - Wide Bandwidth Harmonic Measurement Mode and IEC Harmonic Measurement Mode
 The data update rate setting is invalid. The data update rate is automatically determined by the fundamental frequency and the number of periods of the PLL source.

 - Voltage Fluctuation and Flicker Measurement Mode
 The data update rate is fixed to 2 s.

 - Cycle-by-Cycle Measurement Mode
 The data update rate setting is invalid. The data update rate is automatically determined by the fundamental frequency and the number of measurement cycles of the synchronization source.

- Data Update Rate in Normal Measurement Mode, Waveform Computation Mode, and FFT Mode
 You can select the value from 50 ms, 100 ms, 250 ms, 500 ms, 1 s, 2 s, 5 s, 10 s, and 20 s. The numeric data is updated at the selected interval. To capture relatively fast load fluctuations in the power system, select a fast data update rate. To capture relatively low frequency signals, select a slow data update rate.
 The WT3000 automatically selects the computing method from the two averaging computations below according to the data update rate. For details, see appendix 7.

 - When the Data Update Rate Is 50 ms, 100 ms, 5 s, 10 s, or 20 s
 Computation is performed using ASSP (Average for the Synchronous Source Period) on the sampled data within the data update interval to calculate the measured value. (However, integrated power WP as well as integrated current q during DC mode are excluded.)
 This method requires the period of the assigned synchronous source signal to be detected accurately.
 Check to see that the frequency of the synchronous source signal is being measured correctly according to the procedures given in sections 5.1 and 5.3.
 * For a description of the synchronous source, see appendix 6, “Setting the Measurement Period.”

 - When the Data Update Rate Is 250 ms, 500 ms, 1 s, or 2 s
 Computation is performed using EAMP (Exponential Average for Measuring Period) on the sampled data within the data update interval to calculate the measured value. This method does not require the input signal period to be detected accurately.

Hold «For procedures, see section 4.11.»
The data display of each measurement function can be held. The communication output data while the display is held is the held numeric data.

Single Measurement «For procedures, see section 4.11.»
While in the hold condition, a measurement is performed once at the specified data update rate and enters the hold condition.
2.4 Power Measurement

The measured data of voltage, current, power, and so on can be displayed by setting the screen to numeric display. By dividing the screen into top and bottom halves, waveform (section 2.7), trend (section 2.8), bar graph*1 (section 2.8), waveform computation*2 (section 2.9), and FFT*2 (section 2.9) can be displayed simultaneously.

*1 Only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.
*2 Only on models with the advanced computation (/G6) option.

Display Resolution

The display resolution for voltage, current, active power, apparent power, reactive power, and so on is 600000. When the range rating (rated value of the specified range) is applied, the Σ function of voltage, current, active power, apparent power, reactive power, and so on is set to the decimal point position and unit of the element with the lowest display resolution of the target elements. For the display resolution during integration, see section 5.13.

Numeric Display Related to Power Measurement «For procedures, see section 5.1.»

- Selecting the Number of Displayed Items

The number of items can be selected from 4, 8, 16, All, Single List,*3 and Dual List.*3

*3 Only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

- Example in Which Eight Items Are Displayed

```
<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10639</td>
</tr>
</tbody>
</table>
```

- Example in Which All Items Are Displayed

```
<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
</tr>
</tbody>
</table>
```

- Example in Which All Items Are Displayed

```
<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>148.67</td>
</tr>
<tr>
<td>140.032</td>
</tr>
<tr>
<td>1.04003</td>
</tr>
<tr>
<td>1.05100</td>
</tr>
<tr>
<td>1.140</td>
</tr>
<tr>
<td>1.035</td>
</tr>
<tr>
<td>55.903</td>
</tr>
</tbody>
</table>
```
2.4 Power Measurement

• Changing the Displayed Items
By selecting a displayed item, the numeric data value that is displayed at the position can be changed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{rms}1</td>
<td>0.10496 V</td>
<td>Change the measurement function of the third item</td>
</tr>
<tr>
<td>I_{rms}1</td>
<td>1.6946 A</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>0.1650 W</td>
<td>Change the element of the third item</td>
</tr>
<tr>
<td>S1</td>
<td>0.1779 kVA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{rms}1</td>
<td>0.10513 V</td>
<td></td>
</tr>
<tr>
<td>I_{rms}1</td>
<td>1.6929 A</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>-0.0000 W</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>0.1780 kVA</td>
<td></td>
</tr>
</tbody>
</table>

• Scrolling the Page
The numeric display consists of up to nine pages. The number pages varies depending on the installed options and the number of displayed items. The displayed items can be assigned for each page. The page can be scrolled to switch the page, and the displayed items can be changed collectively.

Display example
Displays the voltage, current, power, and power factor of elements 1 to 4 on pages 1 to 4.

• Resetting the Numeric Display
If the number of displayed items is set to a value other than All, the display order of measurement functions can be reset to a default order (1 default set).

Single list or dual list can be displayed on models with the advanced computation (/G6) or harmonic measurement (/G5) option.
2.5 Computation

By using the data of measurement functions, the following computations can be performed. In addition, a function is provided in which the equation used to determine the measurement function data can be selected.

User-Defined Functions «For procedures, see section 5.4.»

Equations can be created (defined) by combining the measurement function symbols and operators. The numeric data corresponding to the equation can then be determined. The combination of a measurement function and element number (U1:U(E1, ORT), for example) constitutes an operand. 20 equations (F1 through F20) can be defined.

- **Operator**
 - There are 11 operators: +, −, ∗, /, ABS (absolute value), SQR (square), SQRT (square root), LOG (logarithm), LOG10 (common logarithm), EXP (exponent), and NEG (negation).

- **Number of Operands**
 - There can be up to 16 operands in one equation.

MAX Hold «For procedures, see section 5.5.»

Holds the maximum value of the numeric data. The measurement function of which the maximum value is to be held is specified using the user-defined function.

Setting the Average Active Power «For procedures, see section 5.6.»

The average active power can be computed on devices on which the power fluctuates such as an intermittent control device. The computing equation for average active power is specified using the user-defined function.

Setting the Computing Equation for Efficiency «For procedures, see section 5.7.»

By setting equations for η_1 to η_4, the input/output efficiency of a device can be measured. For example, if the input power to a device is $P_{\Sigma}A$ and the output power is $P_{\Sigma}B$, the power conversion efficiency of the device can be computed by setting the equation $\eta_1 = (P_{\Sigma}B)/(P_{\Sigma}A) \times 100$. On models with the motor evaluation function (motor version), the energy conversion efficiency of the motor can be computed by setting the equation $\eta_1 = ((Pm)/(P_{\Sigma}A) \times 100)$ or $((Pm)/(P_{\Sigma}B) \times 100)$.

Setting the Efficiency Compensation «For procedures, see section 5.8.»

Compensates for the measurement loss that occurs due to the wiring used for measurement or the internal impedance of the power meter. There are two functions used to compensate for the loss caused by the measurement instrument. For details, see appendix 8.

- **Wiring Compensation**
 - Compensates for the loss caused by the wiring system of each element.

- **Efficiency Compensation**
 - The power measurement on the secondary side of a power transformer such as an inverter includes loss caused by the measurement instrument. This loss appears as error in the efficiency computation. This function compensates for this loss.
2.5 Computation

Setting the Compensation for Two-Wattmeter Method «For procedures, see section 5.8.»

In the two-wattmeter method, an error results when current flows through the neutral line. This function computes the current flows through the neutral line for measurements using the two-wattmeter method with a three-phase, three wire (3V3A) system and adds the compensation value to the measured power. For details, see appendix 8. This function can be set on models with the delta computation option.

Selecting the Computing Equation for Apparent Power and Reactive Power «For procedures, see section 5.9.»

There are three types of powers: active power, reactive power, and apparent power. In general, each type is defined by the following equations.

- Active power \(P = UI\cos\phi \) ... (1)
- Reactive power \(Q = UI\sin\phi \) ... (2)
- Apparent power \(S = UI \) ... (3)

where \(U \): rms voltage, \(I \): rms current, and \(\phi \): Phase between voltage and current

For three-phase power, it is the sum of the powers of each phase. In addition, these power values are related as follows:

\[
\text{(Apparent power } S)^2 = (\text{active power } P)^2 + (\text{reactive power })^2 \quad \ldots \quad (4)
\]

These definitions apply only for sine waves. The measured values for apparent power and reactive power vary for distorted waveform measurement depending on which definitions above are combined for the computation. Because the equations for deriving the power for distorted waveforms are not defined, none of the equations can be said to be more correct than the other. Therefore, the WT3000 provides three equations for determining the apparent power and reactive power.

Because active power is derived directly from the sampled data, errors resulting from different definitions do not occur such as in the apparent power and reactive power.

- **TYPE 1 (The Method Used by Normal Mode of Conventional WT Series Power Meters)**

 The apparent power of each phase is calculated using equation (3), and the reactive power of each phase is calculated using equation (2). The results are summed to derive the power.

 Active power for three-phase, four-wire system \(P_{\Sigma} = P_1 + P_2 + P_3 \)

 Apparent power for three-phase, four-wire system \(S_{\Sigma} = S_1 + S_2 + S_3 \) (= \(U_1 I_1 + U_2 I_2 + U_3 I_3 \))

 Reactive power for three-phase, four-wire system \(Q_{\Sigma} = Q_1 + Q_2 + Q_3 \)

 \((= s_1 \sqrt{(U_1 I_1)^2 - P_1^2} + s_2 \sqrt{(U_2 I_2)^2 - P_2^2} + s_3 \sqrt{(U_3 I_3)^2 - P_3^2}) \)

 However, the sign for \(s_1, s_2, \) and \(s_3 \) is negative when the current leads the voltage and positive when the current lags the voltage.

- **TYPE2**

 The apparent power of each phase is determined from equation (3), and the results are added to derive the three-phase apparent power. The three-phase reactive power is calculated from the three-phase apparent power and three-phase active power using equation (4).

 Active power for three-phase, four-wire system \(P_{\Sigma} = P_1 + P_2 + P_3 \)

 Apparent power for three-phase, four-wire system \(S_{\Sigma} = S_1 + S_2 + S_3 \) (= \(U_1 I_1 + U_2 I_2 + U_3 I_3 \))

 Reactive power for three-phase, four-wire system \(Q_{\Sigma} = \sqrt{S_{\Sigma}^2 - P_{\Sigma}^2} \)
• TYPE 3 (The Method Used by Harmonic Measurement Mode on the WT1600 and PZ4000)

The reactive power of each phase is calculated directly using equation (2). The three-phase apparent power is calculated using equation (4). This computing equation can be selected on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

Active power for three-phase, four-wire system

\[P_S = P_1 + P_2 + P_3 \]

Apparent power for three-phase, four-wire system

\[S_\Sigma = \sqrt{P_\Sigma^2 + Q_\Sigma^2} \]

Reactive power for three-phase, four-wire system

\[Q_S = Q_1 + Q_2 + Q_3 \]

• Measurement Mode and Computing Equation

The computing equations that can be selected in each measurement mode are as follows:

<table>
<thead>
<tr>
<th>Measurement Mode</th>
<th>S and Q Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Measurement</td>
<td>TYPE 1</td>
</tr>
<tr>
<td>Wide Bandwidth Harmonic*2</td>
<td>Fixed to TYPE3*5</td>
</tr>
<tr>
<td>IEC Harmonic*2</td>
<td>Fixed to TYPE3*3</td>
</tr>
<tr>
<td>Waveform Computation</td>
<td>Yes</td>
</tr>
<tr>
<td>FFT</td>
<td>Yes</td>
</tr>
<tr>
<td>Voltage Fluctuations and Flicker*2</td>
<td>No</td>
</tr>
<tr>
<td>Cycle by Cycle*6</td>
<td>Fixed to TYPE2*6</td>
</tr>
</tbody>
</table>

Yes: Selectable.
No: Not selectable.

*1 Selectable only on models with the advanced computation (/G6) option.
*2 The setup menu of the equations of S and Q is not displayed.
*3 If TYPE1 or 3 is selected and you select wide bandwidth harmonic measurement mode or IEC harmonics mode, the equation switches to TYPE3.
*4 If TYPE3 is selected and you select waveform computation mode or FFT mode, the equation switches to TYPE1.
*5 S and Q are not measured in voltage fluctuation and flicker measurement mode. Thus, the S and Q equation settings are invalid.
*6 If TYPE1 or 3 is selected and you select cycle-by-cycle measurement mode, the equation switches to TYPE2.

Corrected Power «For procedures, see section 5.9.»

Depending on the applicable standard, when the load that is connected to the potential transformer is extremely small, the active power of the potential transformer that is measured needs to be compensated. In such cases, set the compensating equation and the coefficient.

\[\text{IEC76-1(1976), IEEE C57.12.90-1993} \]

\[\text{IEC76-1(1993)} \]

\[P_c = \frac{P}{P_1 + P_2 \left(\frac{U_{\text{rms}}}{U_{\text{mn}}} \right)^2} \]

\[P_c = P \left(1 + \frac{U_{\text{mn}} - U_{\text{rms}}}{U_{\text{mn}}} \right) \]

\[P_c: \text{Corrected Power} \]

\[P: \text{Active power} \]

\[U_{\text{rms}}: \text{True rms voltage} \]

\[U_{\text{mn}}: \text{Voltage (rectified mean value calibrated to the rms value)} \]

\[P_1, P_2: \text{Coefficient as defined in the applicable standard} \]
2.5 Computation

Phase Difference «For procedures, see section 5.10»

The display format of the phase difference between the voltage and current of each element can be selected. With the voltage of each element as a reference, one format displays the phase difference using 360° in the clockwise direction, and the other format displays lead up to 180° in the counterclockwise direction (D) and lag up to 180° in the clockwise direction (G). The phase difference of harmonic order 1 to 100 of the voltage and current on the harmonic measurement option is displayed using a 360° format or a 180° format (negative sign for lead and no sign for lag).

Delta Computation «See the Expansion Function User's Manual IM760301-51E.»

Delta computation can be performed on models with the delta computation function option.

Equation for Distortion Factor «See the Expansion Function User's Manual IM760301-51E.»

The distortion factor can be computed on models with the advanced computation (/G6) or harmonic measurement (/G5) option. You can select one of two equations available for computing the distortion factor.
2.6 Integration

The WT3000 can integrate the active power (watt hour), the current (ampere hour), the apparent power (volt-ampere-hour), and the reactive power (var-hour). During integration, the measured and computed values of normal measurements can be displayed in addition to the watt hour, current hour, volt-ampere-hour, var-hour and integration time.

Measurement Functions of Integration

- **Measurement Functions on Each Input Element**

 The following nine types of numeric data can be determined. For details related to the determination of measurement function data, see “Appendix 1.”

 \[
 \text{WP (watt hour, sum of positive and negative watt hours), WP+ (positive watt hour consumed), WP- (negative watt hour returned to the power supply (regenerated energy)), q (current hour, sum of positive and negative current hours), q+ (positive current hour consumed), q- (negative current hour returned to the power supply), WS (volt-ampere-hour), WQ (var-hour), and Time (integration time).}
 \]

- **Measurement Functions of wiring units ΣA and ΣB (Σ Functions)**

 The following eight types of numeric data can be determined. For details related to the determination of measurement function data, see “Appendix 1.”

 \[
 \text{WPΣ (sum of WP), WP+Σ (sum of WP+), WP-Σ (sum of WP-), qΣ (sum of q), q+Σ (sum of q+), q-Σ (sum of q-), WSΣ (sum of SΣ), and WQΣ (sum of QΣ).}
 \]

Integration Mode «For procedures, see sections 5.11 and 5.12.»

There are five moves in the integration function: manual integration mode, normal integration mode, repetitive integration mode, real-time integration mode, and real-time repetitive integration mode.

- **Manual Integration Mode**

 Integration continues from the point when it is started to the point it is stopped. However, when the integration time reaches its maximum (10000 hours) or the integration value reaches its maximum or minimum (see section 5.11), the integration is stopped and the integration time and integration value at that point are held.
2.6 Integration

- **Normal Integration Mode**
 The integration time is set in relative time. The integration is stopped after the specified time elapses or when the integration value reaches the maximum or minimum integration display value. The integration time and value are held at that point.

- **Repetitive Integration Mode (Continuous Integration)**
 The integration time is set in relative time. When the specified time elapses, the operation is automatically reset and restarted. Integration is repeated until STOP is pressed. When the integration value reaches the maximum or minimum integration display value, the integration time and value are held.
• **Real-Time Normal Integration Mode**

The date and time of start and stop of the integration operation are set. The integration is stopped at the specified time or when the integration value reaches the maximum or minimum integration display value. The integration time and value are held at that point.

![Integration value diagram]

![Integration time diagram]

• **Real-Time Repetitive Integration Mode (Continuous Integration)**

The start and stop of the integration operation are set with the date and time. The integration is repeated at the specified timer setting during that time. When the time specified by the timer elapses, the operation is automatically reset and restarted. The integration is stopped at the specified time or when the integration value reaches the maximum or minimum integration display value. The integration time and value are held at that point.

![Integration value diagram for Continuous Integration]

![Integration time diagram for Continuous Integration]
2.7 Waveform Display

The WT3000 displays waveforms based on the data sampled within the data update rate.

Selecting the Waveform to Be Displayed «For procedures, see section 6.2.»

You can select whether to show or hide the voltage and current waveforms of each input element. This feature enables easy viewing of waveforms as only the required waveforms can be displayed.

Vertical (Amplitude) Axis

The vertical display range is determined based on the specified measurement range. For example, if the crest factor is set to 3 and the voltage measurement range is set to “100 Vrms,” then the display range is set so that the top of the screen is 300 Vpk (100 Vrms × 3) and the bottom is −300 Vpk (−100 Vrms × 3) with the zero input line at the center. If the crest factor is set to 6 and the voltage measurement range is set to “50 Vrms,” then the display range is set so that the top of the screen is 300 Vpk (50 Vrms × 6) and the bottom is −300 Vpk (−50 Vrms × 6) with the zero input line at the center. The waveform clips if this range is exceeded.

Horizontal (Time) Axis «For procedures, see section 6.3.»

Set the horizontal (time) axis by specifying the time per grid (1 division). The time axis can be set in 1, 2, or 5 steps in the range up to the point in which the time corresponding to one screen is equal to the data update rate. For example, if the data update rate is 500 ms, the time per division can be changed in the order, 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms, 20 ms, and 50 ms. This allows the time of one screen to be changed in the order, 5 ms, 10 ms, 20 ms, 50 ms, 100 ms, 200 ms, and 500 ms.

![Graph showing vertical axis with measurement ranges and input zero line.](image)

![Graph showing horizontal axis with time per division.](image)
2.7 Waveform Display

Note

- Waveform sampling data and waveform display data (the number of displayed points on the screen)

 The waveform sampling data and waveform display data are both measured data of the waveform, but they differ as described below.

 Waveform sampling data: Data derived by making an A/D conversion of the input signal

 The A/D conversion rate is approximately 200 kS/s on the WT3000. Therefore, if the data update rate is set to 1 s, the number of waveform sampling data points in a single measurement is approximately 200,000 for an input signal (see the figure below). The waveform sampling data is also called acquisition data or raw wave data.

 Waveform display data: Waveform display data on the WT3000 screen (1002 points)

 When displaying waveforms on the WT3000, data points are displayed in horizontal rasters (along the time axis). The number of rasters is 501. Each raster contains two points of waveform display data. The two data points are the maximum and minimum values of the waveform data in each raster. Therefore, the number of waveform display data points (the number of points displayed on the screen) is 1002 for an input signal.

Extraction of the waveform display data from the waveform sampling data (p-p compression)

Let us consider an example when a 2-Hz sine wave is measured at the data update rate of 1 s. To display this waveform on the WT screen, the number of data points is converted from approximately 200,000 to 1002 (501 pairs of maximum and minimum values). Thus, two points (a pair) of waveform display data is derived from approximately 400 points of waveform sampling data. This conversion is called p-p (peak-peak) compression. The compression rate of p-p compression varies depending on the data update rate and the horizontal scale (time axis) of the WT waveform display.
2.7 Waveform Display

- **Aliasing**
 When the sampling rate is comparatively low with respect to the input signal frequency, the harmonics contained in the signal are lost. In this case, some of the harmonics will appear at low frequencies due to the effects described by the Nyquist sampling theorem. This phenomenon is called aliasing.

- **Retrieval of waveform display data**
 The WT3000 retrieves waveform display data to the memory at a sampling rate of approximately 200 kS/s. The frequency that allows displaying of waveforms that are close to the input signal is up to approximately 10 kHz.
Trigger «For procedures, see section 6.4.»

A trigger is a cue used to display the waveform on the screen. The trigger is activated when the specified trigger condition is met. At this point, the waveform is ready to be displayed on the screen.

- **Trigger Mode**
 Trigger mode specifies the conditions for updating the screen display.

- **Auto Mode**
 If a trigger occurs within a specified amount of time (about 100 ms, referred to as the timeout period), the waveform display is updated. If a trigger does not occur within the timeout time, the display is automatically updated when the timeout time elapses.

- **Normal Mode**
 The display is updated only when the trigger occurs. The display is not updated if the trigger does not occur.

- **Trigger Source**
 Trigger source refers to the signal that is used in checking the trigger condition.

- **Trigger Slope**
 Trigger slope refers to the movement of the signal from a low level to a high level (rising edge) or from a high level to a low level (falling edge). When the slope is used as one of the trigger conditions, it is called a trigger slope.

- **Trigger Level**
 Trigger level refers to the level through which the trigger slope passes.

 When the slope of the trigger source passes through the specified trigger level on a rising or falling edge, a trigger is activated. You can select the input signal of each element or external clock input signal as a trigger source.

- **Trigger Point**
 Trigger point refers to the point at which a trigger occurred. The trigger point is always at the left end of the screen. The waveform after the trigger point is displayed from the left to the right of the screen as the time progresses.
Zooming Vertically on the Waveform «For procedures, see section 6.5.»

Each displayed waveform can be expanded or reduced vertically by the zoom factor in the range of 0.1 to 100. The waveform is zoomed around the zero input line.

Vertical Position of the Waveform «For procedures, see section 6.5.»

The displayed position of the waveform can be moved vertically to the desired position such as when you wish to view the mutual relationship between the voltage and current waveforms or when the section of the waveform you wish to view goes out of the display frame.
Split Display of the Waveform and Assignment of Waveforms «For procedures, see section 6.6.»

The screen can be evenly divided and the waveforms can be assigned to the divided windows. The screen can be divided into up to four windows. This function is useful when there are many waveforms on the screen. You can select the method of assignment from the choices below:

• Auto
 The waveforms that are turned ON are assigned in order according to the element number to the divided windows, voltage first and then current.

• Fixed
 The waveforms are assigned in order by element number in the order voltage and current to the divided windows regardless of whether or not the display is turned ON.

• User
 The waveforms can be assigned arbitrarily to the divided windows regardless of whether or not the display is turned ON.

Display Interpolation of the Waveform «For procedures, see section 6.7.»

The waveform display data can be connected linearly to display the waveform smoothly.

• Linear Interpolation
 Linearly interpolates between two points.

• Interpolation OFF
 No interpolation is performed. Only the data points are displayed.

Graticule «For procedures, see section 6.7.»

A grid or cross scale can be displayed on the screen. You can also select not to display the grid or cross scale.

Displaying Scale Values «For procedures, see section 6.8.»

The upper and lower limits of the vertical axis and the values at the left and right ends of the horizontal axis (time axis) of each waveform can be turned ON or OFF.
2.7 Waveform Display

Displaying Waveform Labels «For procedures, see section 6.8.»
Waveform labels can be turn ON or OFF.

![Waveform labels diagram](image)

Cursor Measurement «For procedures, see sections 6.9 and 7.8.»
The value at the crossing point of the waveform and cursor can be measured and displayed. It can be used to measure the voltage and current of various sections of the waveform and the data on the horizontal axis (X-axis). Cursor measurements are performed on the data that is displayed on the screen.

Cursors are the “+” and “×” marks that are displayed on the screen. The vertical value and the X-axis value from the left end of the screen for each cursor can be measured. In addition, the difference in the vertical values and in the X-axis values between the cursors can be measured.
2.8 Trend, Bar Graph, and Vector Displays

Trends of each measurement function, bar graphs of harmonics of each order, and vectors of the fundamental signal of each element (when using the harmonic measurement option) can be displayed.

Trend display

The trends of all measurement functions that are measured during normal measurement and harmonic measurement are displayed.

- **Trend Display Data**
 When the retrieval of waveform display data is OFF during normal measurement, the numeric data of measurement functions that are determined for each data update rate is P-P compressed for each display segment (raster) and made into trend display data.
 When the retrieval of waveform display data is ON during normal measurement, the numeric data of measurement functions that are determined each time a trigger occurs is P-P compressed for each display segment (raster) and made into trend display data.
 * In some cases, P-P compression is not performed.

- **Horizontal (Time) Axis** «For procedures, see section 7.4.»
 The time per division can be set in the range of 3 s to 1 day.

- **Setting the Scale** «For procedures, see section 7.5.»
 Auto scaling is provided in which the upper and lower limits of the screen are determined automatically from the maximum and minimum values of the trend display data. Manual scaling is also available in which the upper and lower limits can be set arbitrarily as necessary.

- **Split Display Display and Assignments** «For procedures, see section 7.6.»
 Up to 16 lines (T1 through T16) of trends can be displayed. You can select the measurement function of any element to be assigned to T1 through T16. During harmonic measurement, you can also specify the harmonic.
 The screen is divided up to 4 windows and the trends that are turned ON are assigned to the divided windows in order from T1 through T16.

- **Display Interpolation, Graticule, and Label Display** «For procedures, see sections 6.6 and 6.7.»
 The settings specified for waveform display are used.
Bar Graph Display of Harmonic Data "See the Expansion Function User's Manual IM760301-51E."

On models with the advanced computation (/G6) or harmonic measurement (/G5) option, the amplitude of each harmonic can be displayed on the bar graph. The horizontal axis represents harmonic order, and the vertical axis represents the amplitude of each harmonic.

Vector Display of Harmonics "See the Expansion Function User's Manual IM760301-51E."

During harmonic measurement on models with the advanced computation (/G6) or harmonic measurement (/G5) option, vectors can be displayed to show the relationship between the phase difference and amplitude (rms value) of the fundamental signals U(1) and I(1) of each element that is assigned to the selected wiring unit.
2.9 Waveform Computation and FFT

Waveform Computation «See the Expansion Function User’s Manual IM760301-51E.»
Various computations can be performed on the waveform data of the input signal on models with the advanced computation (/G6) option. For example, the waveform data of the voltage and current input signals can be multiplied together to display the waveform of instantaneous power.

- Waveform of voltage U1
- Waveform of current I1
- Waveform of active power P1 (= U1 × I1)

FFT «See the Expansion Function User’s Manual IM760301-51E.»
The power spectrum of the input signal can be displayed through FFT (fast Fourier transform) on models with the advanced computation (/G6) option. This is useful when you wish to check the frequency distribution of the input signal.

- Waveform of current I1
- Power spectrum waveform of current I1
2.10 Voltage Fluctuation and Flicker and Cycle-by-Cycle Measurements

Voltage fluctuation and flicker measurements conforming to IEC61000-3-3 can be performed on models with the voltage fluctuation and flicker measurement (FL) option.

]*4

The voltage, current, power, and other parameters for each cycle of the AC input signal can be measured on models with the cycle-by-cycle measurement (CC) option.

<table>
<thead>
<tr>
<th>Cycle by Cycle Mode U1c: U1c: 500mVrms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower: Spd: IT-4: Complete</td>
</tr>
<tr>
<td>Lower: Trq:</td>
</tr>
</tbody>
</table>

Sync Source U1 Cycle Count 100

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.090</td>
<td>100.300</td>
<td>1.722</td>
<td>53.181</td>
<td>57.472</td>
</tr>
<tr>
<td>2</td>
<td>49.975</td>
<td>100.354</td>
<td>568.503</td>
<td>53.206</td>
<td>57.170</td>
</tr>
<tr>
<td>3</td>
<td>50.090</td>
<td>100.434</td>
<td>570.109</td>
<td>53.333</td>
<td>57.258</td>
</tr>
<tr>
<td>4</td>
<td>50.090</td>
<td>100.423</td>
<td>568.562</td>
<td>53.148</td>
<td>57.095</td>
</tr>
<tr>
<td>5</td>
<td>49.988</td>
<td>100.390</td>
<td>568.144</td>
<td>53.086</td>
<td>57.030</td>
</tr>
<tr>
<td>6</td>
<td>49.975</td>
<td>100.307</td>
<td>571.923</td>
<td>53.163</td>
<td>57.417</td>
</tr>
<tr>
<td>7</td>
<td>50.090</td>
<td>100.415</td>
<td>568.813</td>
<td>53.191</td>
<td>57.171</td>
</tr>
<tr>
<td>8</td>
<td>49.988</td>
<td>100.407</td>
<td>569.107</td>
<td>53.204</td>
<td>57.142</td>
</tr>
<tr>
<td>9</td>
<td>50.080</td>
<td>100.410</td>
<td>568.501</td>
<td>53.167</td>
<td>57.091</td>
</tr>
<tr>
<td>10</td>
<td>49.963</td>
<td>100.328</td>
<td>571.212</td>
<td>53.046</td>
<td>57.395</td>
</tr>
<tr>
<td>11</td>
<td>50.013</td>
<td>100.383</td>
<td>568.012</td>
<td>53.219</td>
<td>57.190</td>
</tr>
<tr>
<td>12</td>
<td>49.986</td>
<td>100.404</td>
<td>568.394</td>
<td>53.249</td>
<td>57.103</td>
</tr>
<tr>
<td>13</td>
<td>49.988</td>
<td>100.419</td>
<td>568.715</td>
<td>53.193</td>
<td>57.112</td>
</tr>
<tr>
<td>14</td>
<td>49.988</td>
<td>100.425</td>
<td>571.397</td>
<td>53.149</td>
<td>57.328</td>
</tr>
<tr>
<td>15</td>
<td>50.080</td>
<td>100.463</td>
<td>568.506</td>
<td>53.101</td>
<td>57.140</td>
</tr>
<tr>
<td>16</td>
<td>49.986</td>
<td>100.426</td>
<td>568.047</td>
<td>53.114</td>
<td>57.046</td>
</tr>
<tr>
<td>17</td>
<td>49.988</td>
<td>100.421</td>
<td>568.712</td>
<td>53.142</td>
<td>57.113</td>
</tr>
<tr>
<td>18</td>
<td>49.963</td>
<td>100.373</td>
<td>572.551</td>
<td>53.171</td>
<td>57.486</td>
</tr>
<tr>
<td>19</td>
<td>50.013</td>
<td>100.463</td>
<td>568.249</td>
<td>53.261</td>
<td>57.104</td>
</tr>
<tr>
<td>20</td>
<td>49.986</td>
<td>100.434</td>
<td>568.198</td>
<td>53.118</td>
<td>57.065</td>
</tr>
</tbody>
</table>
2.11 Saving and Loading Data and Other Functions

Storing and Recalling «For procedures, see chapter 8.»
The numeric data and waveform display data can be stored in the internal memory. The data is stored at the data update rate or a specified time interval to the internal memory. Data stored to the internal memory can be saved on a PC card. The data that is saved to the PC card cannot be recalled.

Saving and Loading from the Storage Medium «For procedures, see chapter 12.»
The WT3000 comes standard with a PC card drive. A USB port (peripheral devices) is also available as an option. The numeric data, waveform display data, waveform sampling data, screen image data, and setup parameters can be saved to a PC card or USB memory. The saved setup parameters can be loaded as necessary. The screen image data can be pasted to documents on a word-processing application.
2.11 Saving and Loading Data and Other Functions

Printing on the Built-in Printer
The screen image and numeric data list can be printed on the built-in printer (optional). For details, see chapter 2 in the Expansion Function User's Manual IM760301-51E.

Ethernet Communication (Option)
The numeric data, waveform display data, screen image data, and setup parameters can be saved to a device connected via the Ethernet interface or information about the WT3000 can be transmitted.

- Saving and Loading from an FTP Server on the Network (FTP Client Function)
The numeric data, waveform display data, screen image data, and setup parameters can be saved to an FTP server* on the network in the same fashion as the PC card. The saved setup parameters can also be loaded as necessary.
 * PC or workstation on which the FTP server function is running.

- Accessing the WT3000 from a PC or Workstation (FTP Server Function)
You can access the WT3000 from an FTP client* on the network and retrieve the files on the PC card of the WT3000 or USB storage (optional). The FTP server function can be used when a PC card or USB storage is connected to the WT3000.
 * A PC or workstation on which the FTP client function is running.

- Printing on a Network Printer (LPR Client Function)
The screen image can be printed on a network printer in the same fashion as the built-in printer.

- Sending Mail (SMTP Client Function)
The information of the WT3000 can be transmitted periodically to a specified mail address.
2.11 Saving and Loading Data and Other Functions

GP-IB/Serial/USB Communication «See the Communication Interface User’s Manual IM760301-17E.»
The measured data can be transferred via the GP-IB interface (standard equipped), the serial interface (conforming to EIA-574 (9-pin EIA-232 (RS-232)), option), or the USB port (option) to a PC for analysis or an external controller can be used to control the instrument for making measurements.

Entering Values and Strings on the USB Keyboard «For procedures, see section 3.15»
You can connect a USB keyboard to the USB port (peripheral device) (option) and enter file names, comments, and so on.

D/A Output (Option) «See the Expansion Function User’s Manual IM760301-51E.»
The numeric data can be output using a ±5 V FS DC analog voltage. A maximum of 20 items can be set.

RGB Video Signal (VGA) Output (Option) «See the Expansion Function User’s Manual IM760301-51E.»
The RGB video signal (VGA, Video Graphics Array) can be output to an external monitor. This allows values and waveforms to be displayed on a large screen.

Initialization «For procedures, see section 3.13.»
The settings entered using keys and soft keys can be restored to factory default settings. For details on the initial settings, see appendix 2, “List of Initial Settings and Display Order of Numeric Data.”

Selecting the Message Language «For procedures, see section 3.17.»
The language of the error messages displayed on the screen during operation can be set to English or Japanese.

Selecting the Menu Language «For procedures, see section 3.17.»
The language of the software menus displayed on the screen can be set to English or Japanese.

Checking the System Conditions «For procedures, see section 11.4.»
The instrument configuration such as the model, firmware version (ROM version), input element configuration, and installed options can be checked.

Zero-Level Compensation «For procedures, see section 10.1.»
Zero-level compensation refers to creating a zero input condition inside the WT3000 and setting the level at that point as the zero level. Zero-level compensation must be performed in order to satisfy the specifications of this instrument (see chapter 12). Zero-level compensation is automatically performed when the measurement range or input filter is changed. However, if the measurement range, and input filter are not changed over an extended time, the zero level may change due to the changes in the environment surrounding the instrument. In such cases, you can manually perform zero-level compensation. There is also a function that automatically performs zero-level compensation during integration.
2.11 Saving and Loading Data and Other Functions

NULL Function «For procedures, see section 10.2.»
When the NULL function is turned ON, the Udc and Idc (numeric data of the simple average of the voltage and current during normal measurement) are set as NULL values. The NULL values are subtracted from the sampled data of voltage and current. Hence, all measurement functions are affected by the NULL values.

Selecting the Sampling Frequency «For procedures, see section 10.3.»
The WT3000 has three types of sampling frequencies at approximately 200 kHz to prevent the input waveform from being measured as a DC signal due to aliasing (see section 2.7). The sampling frequency can be automatically switched or fixed to one of three types.

Setting the Display Font «For procedures, see section 10.4.»
The text font that is displayed can be selected from two types of fonts.

Setting the Brightness of the Screen «For procedures, see section 10.5.»
The brightness of the LCD monitor can be adjusted.

Setting the Display Colors «For procedures, see section 10.6.»
The colors for graphical elements such as the waveform, background, scale, and cursor and text elements such as the menu and the menu background can be selected. Set the color using a ratio of red (R), green (G), and blue (B).

Setting the Key Lock or Shift Lock «For procedures, see section 10.7.»
Key lock can be used to prevent inadvertent operation errors. Shift lock can be used to reduce the number of times you press the Shift key.

Help Function «For the procedure, see section 10.8.»
A brief explanation on operation or function can be viewed.

Master/Slave Synchronized Measurement «For procedures, see section 10.9.»
With the master instrument outputting a measurement start signal and the slave instrument receiving the signal, synchronized measurement on two instruments can be achieved.

Self-Test Function «For procedures, see section 11.3.»
A self-test can be performed to check whether the instrument is operating properly. Components such as the internal memory (ROM and RAM) and the operation keys can be tested.
3.1 Handling Precautions

Read the Safety Precautions

- **Safety Precautions**
 If you are using this instrument for the first time, make sure to thoroughly read “Safety Precautions” given on pages v and vi.

- **Do Not Remove the Case**
 Do not remove the case from the instrument. Some parts of the instrument use high voltages, which are extremely dangerous. For internal inspection and adjustment, contact your nearest YOKOGAWA dealer.

- **Unplug If Abnormal Behavior Occurs**
 If you notice smoke or unusual odors coming from the instrument, immediately turn OFF the power and unplug the power cord. In addition, turn OFF the power to the circuit under measurement that is connected to the input terminals. If these symptoms occur, contact your nearest YOKOGAWA dealer.

- **Do Not Damage the Power Cord**
 Nothing should be placed on top of the power cord. The power cord should also be kept away from any heat sources. When unplugging the power cord from the outlet, never pull by the cord itself. Always hold and pull by the plug. If the power cord is damaged, check the part number indicated on page iii and purchase a replacement.

General Handling Precautions

- **Do Not Place Objects on Top of the Instrument**
 Never stack the instruments or place other instruments or any objects containing water on top of the instrument. This may damage the recorder.

- **Keep Electrically Charged Objects Away from the Instrument**
 Keep electrically charged objects away from the input terminals. They may damage the internal circuitry.

- **Do Not Damage the LCD**
 Since the LCD screen is very vulnerable and can be easily scratched, do not allow any sharp objects near it. Also, do not apply vibration or shock to it.

- **Unplug during Extended Non-Use**
 Turn OFF the power to the circuit under measurement and the instrument and remove the power cord from the outlet.

- **Carry the Instrument Properly**
 First, turn OFF the circuit under measurement and remove the measurement cables. Then, turn OFF the instrument and remove power and other cables. When moving the instrument, hold the handle on each side of the instrument as shown below.

- **When Wiping off Dirt**
 When cleaning the case or the operation panel, first turn OFF the circuit under measurement and the instrument and remove the instrument’s power cord from the outlet. Do not use volatile chemicals since this might cause discoloring and deformation.
3.2 Installing the Instrument

WARNING
- This instrument is designed to be used indoors. Do not install or use it outdoors.
- Install the instrument so that you can immediately remove the power cord if an abnormal or dangerous condition occurs.

CAUTION
If you block the inlet or outlet holes on the WT3000, the WT3000 will become hot and may break down.

Installation Conditions

Install the instrument indoors that meets the following conditions.

- **Flat, Even Surface**
 If the instrument is not installed on a stable horizontal surface, the printer's recording quality may degrade and precise measurements may be impeded.

- **Well-Ventilated Location**
 Inlet/Vent holes are located on the top and bottom of the instrument. To prevent internal overheating, allow at least 20 mm of space around the inlet and vent holes.

 When connecting measurement wires and other various cables or when opening or closing the built-in printer cover, allow extra space for operation.

- **Ambient Temperature and Humidity**
 Ambient temperature: 5 to 40°C
 Ambient humidity: 20 to 80%RH (when the printer is not used)
 35 to 80%RH (when using the printer)
 No condensation in either case.

- **Do not install the instrument in the following places:**
 - Outdoors.
 - In direct sunlight or near heat sources.
 - Where the instrument is exposed to water or other liquids.
 - Where an excessive amount of soot, steam, dust, or corrosive gas is present.
 - Near strong magnetic field sources.
 - Near high voltage equipment or power lines.
 - Where the level of mechanical vibration is high.
 - On an unstable surface.

Note
- For the most accurate measurements, use the instrument in the following environment.
 - Ambient temperature: 23±5°C Ambient humidity: 30 to 75%RH (no condensation)
 - When using the instrument in a place where the ambient temperature is 5 to 18°C or 28 to 40°C, add the temperature coefficient to the accuracy as specified in chapter 12.
 - When installing the instrument in a place where the ambient humidity is 30% or below, take measures to prevent static electricity such as using an anti-static mat.
 - Condensation may occur if the instrument is moved to another place where the ambient temperature is higher, or if the temperature changes rapidly. In this case, let the instrument adjust to the new environment for at least one hour before using the instrument.
Storage Location

When storing the instrument, avoid the following places:

- Where the relative humidity is 80% or more.
- In direct sunlight.
- Where the temperature is 60°C or higher.
- Near a high humidity or heat source.
- Where the level of mechanical vibration is high.
- Where corrosive or explosive gas is present.
- Where an excessive amount of soot, dust, salt, and iron are present.
- Where water, oil, or chemicals may splash.

It is recommended that the instrument be stored in an environment where the temperature is between 5 and 40°C and the relative humidity is between 20 and 80% RH.

Installation Position

- **Desktop**
 Place the instrument on a flat, even surface as shown in the figure below. If the instrument is installed in a horizontal position, rubber stoppers can be attached to the feet to prevent the instrument from sliding. Two sets (four pieces) of rubber feet are included in the package.

- **Rack Mount**
 To rack mount the instrument, use the rack mount kit that is sold separately.

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Model</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack mount kit</td>
<td>751535-E4</td>
<td>For EIA</td>
</tr>
<tr>
<td>Rack mount kit</td>
<td>751535-J4</td>
<td>For JIS</td>
</tr>
</tbody>
</table>

An outline of the attachment procedures is given below. For details regarding the attachment procedures, see the instructions that are included with the rack mount kit.

1. Remove the handles from each side of the instrument.
2. Remove the four feet from the bottom of the instrument.
3. Remove the two plastic rivets and the four seals covering the rack mount attachment holes on each side of the instrument near the front.
4. Place seals over the feet and handle attachment holes.
5. Attach the rack mount kit.
6. Mount the instrument on the rack.

Note

- When rack mounting the instrument, allow at least 20 mm of space around the inlet and vent holes to prevent internal overheating.
- Make sure to provide adequate support from the bottom of the instrument. But, do not block the inlet or vent holes in the process.
3.3 Connecting the Power Supply

Before Connecting the Power Supply
To prevent the possibility of electric shock and damage to the instrument, follow the warnings below.

WARNING

- Make sure that the power supply voltage matches the instrument's rated supply voltage and that it does not exceed the maximum voltage range specified for the power cord.
- Connect the power cord after checking that the power switch of the instrument is turned OFF.
- To prevent electric shock or fire, always use the power cord supplied by YOKOGAWA.
- Make sure to perform protective grounding to prevent the possibility of electric shock. Connect the power cord to a three-prong power outlet with a protective earth terminal.
- Do not use an extension cord without protective earth ground. Otherwise, the protection function will be compromised.
- Use an AC outlet that complies with the power cord provided and securely connect the protective grounding. If such an AC outlet is unavailable and protective grounding cannot be furnished, do not use the instrument.

Connecting the Power Cord

1. Check that the power switch is OFF.
2. Connect the power cord plug to the power connector on the rear panel. (Use the power cord that comes with the package.)
3. Connect the plug on the other end of the power cord to the outlet that meets the conditions below. The AC outlet must be of a three-prong type with a protective earth ground terminal.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>Permitted supply voltage range</td>
<td>90 to 264 VAC</td>
</tr>
<tr>
<td>Rated power supply frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Permitted supply voltage frequency range</td>
<td>48 to 63 Hz</td>
</tr>
<tr>
<td>Maximum power consumption (when using the printer)</td>
<td>150 VA</td>
</tr>
</tbody>
</table>

* The instrument can use a 100-V or a 200-V system for the power supply. Check that the voltage supplied to the instrument is less than or equal to the maximum rated voltage of the provided power cord (see page iii) before using it.
3.4 Turning ON/OFF the Power Switch

Items to Be Checked before Turning ON the Power

- Check that the instrument is installed properly (see section 3.2, “Installing the Instrument”).
- Check that the power cord is connected properly (see section 3.3, “Connecting the Power Supply”).

Location of the Power Switch

The power switch is located in the lower left corner of the front panel.

Turning the Power Switch ON/OFF

The power switch is a push button. Press the button once to turn it “ON” and press it again to turn it “OFF.”

Power ON Operation

When the power switch is turned ON, the self-test starts automatically. When the self-test completes successfully, the display shows the screen that was displayed immediately before the power switch was turned OFF. Before using the instrument, check that the self-test completes successfully.

When the Power-on Operation Does Not Finish Normally

Turn OFF the power switch and check the following points.

- That the power cord is securely connected.
- That the correct voltage is coming to the power outlet (see section 3.3, “Connecting the Power Supply”).
- That the fuse is not blown (see section 11.5, “Replacing the Power Fuse”).
- If the power switch is turned ON while holding down RESET, the setup parameters are initialized to their factory default values. For the initial settings, see appendix 3.13.

If the instrument still does not work properly when the power switch is turned ON after checking these items, contact your nearest YOKOGAWA dealer for repairs.
3.4 Turning ON/OFF the Power Switch

For Making Accurate Measurements

- Allow the instrument to warm up for at least 30 minutes after turning ON the power switch.
- Perform zero-level compensation after warm-up (see section 10.1, “Performing Zero-Level Compensation”).

Shutdown Operation

The setup parameters that exist immediately before the power switch is turned OFF are stored in memory. The same is true when the power cord gets disconnected from the outlet. The next time the power switch is turned ON, the instrument powers up using the stored setup parameters.

Note

A lithium battery is used to retain the setup parameters. When the lithium battery voltage falls below a certain level, a message is displayed on the screen (see section 11.2) when the power switch is turned ON. If this message appears frequently, the battery must be replaced quickly. The user cannot replace the battery. Contact your nearest YOKOGAWA dealer to have the battery replaced. For information regarding battery life, see section 11.6.
3.5 Wiring Precautions

To prevent the possibility of electric shock and damage to the instrument, follow the warnings below.

WARNING

- Employ protective earth ground before connecting measurement cables. The power cord that comes with the instrument is a three-pin type power cord. Connect the power cord to a properly grounded three-prong outlet.
- Turn OFF the power to the circuit under measurement, when wiring or disconnecting the circuit. Connecting or removing measurement cables while the power is ON is dangerous.
- Take special caution not to wire a current circuit to the voltage input terminal or a voltage circuit to the current input terminal.
- Strip the insulation cover of the measurement cable so that when it is wired to the input terminal, the conductive parts (bare wires) do not protrude from the terminal. Also, make sure to fasten the input terminal screws securely so that the cable does not come loose.
- Use cables with safety terminals that cover the conductive parts for connecting to the voltage input terminals. Using a terminal with bare conductive parts (such as a banana plug) is dangerous if the terminal comes loose.
- Use cables with safety terminals that cover the conductive parts for connecting to the current sensor input terminals. Using a terminal with bare conductive parts is dangerous if the terminal comes loose.
- When the voltage of the circuit under measurement is being applied to the current input terminals, do not touch the current sensor input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.
- When connecting measurement cables from an external current sensor to the current sensor input connector, remove the cables connected to the current input terminals. In addition, when the voltage of the circuit under measurement is being applied to the current sensor input terminal, do not touch the current input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.
- When using the external voltage transformer (VT) or current transformer (CT), make sure it has enough withstand voltage with respect to the voltage (U) being measured (2U + 1000 V recommended). Also, make sure that the secondary side of the CT does not become an open circuit while the power is being applied. If this happens, high voltage will appear at the secondary side of the CT, making it extremely dangerous.
- When applying a current exceeding 10 A from a current transformer (CT) to this instrument, provide protection.
- When using an external current sensor, make sure to use a sensor that comes in a case. The conductive parts and the case should be insulated, and the sensor should have enough withstand voltage with respect to the voltage being measured. Using a bare sensor is dangerous, because you might accidentally come in contact with it.
- When using a shunt-type current sensor as an external current sensor, turn OFF the circuit under measurement. Connecting or removing a sensor while the power is ON is dangerous.
- When using a clamp-type current sensor as an external current sensor, have a good understanding of the voltage of the circuit under measurement and the specifications and handling of the clamp-type sensor. Then, confirm that there are no shock hazards.
- For safety reasons, when using the instrument on a rack mount, furnish a switch for turning OFF the circuit under measurement from the front side of the rack.
3.5 Wiring Precautions

- After connecting the measurement cable, attach the current input protection cover using the screws provided for your safety (screw tightening torque: 0.6 N•m). Make sure that the conductive parts are not exposed from the protection cover.
- To make the protective functions effective, check the following items before applying the voltage or current of the circuit under measurement.
 - That the power cord provided with the instrument is used to connect to the power supply and the instrument is grounded.
 - That the power switch of the instrument is turned ON.
 - That the current input protective cover provided with the instrument is being used.
- When the power switch of the instrument is turned ON, do not apply a signal that exceeds the following values to the voltage or current input terminals. When the instrument is turned OFF, turn OFF the circuit under measurement. For a description of other input terminals, see the specifications of each module in chapter 12.

Instantaneous Maximum Allowable Input (1 s or less)

<table>
<thead>
<tr>
<th>Voltage Input</th>
<th>Current Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct Input</td>
</tr>
<tr>
<td></td>
<td>2-A input element</td>
</tr>
<tr>
<td></td>
<td>Peak value of 9 A or RMS value of 3 A, whichever is less.</td>
</tr>
<tr>
<td></td>
<td>30-A input element</td>
</tr>
<tr>
<td></td>
<td>Peak value of 150 A or RMS value of 50 A, whichever is less.</td>
</tr>
<tr>
<td></td>
<td>External Sensor Input</td>
</tr>
<tr>
<td></td>
<td>Peak value less than or equal to 10 times the range.</td>
</tr>
</tbody>
</table>

Continuous Maximum Allowable Input

<table>
<thead>
<tr>
<th>Voltage Input</th>
<th>Current Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct Input</td>
</tr>
<tr>
<td></td>
<td>2-A input element</td>
</tr>
<tr>
<td></td>
<td>Peak value of 6 A or RMS value of 2.2 A, whichever is less.</td>
</tr>
<tr>
<td></td>
<td>30-A input element</td>
</tr>
<tr>
<td></td>
<td>Peak value of 90 A or RMS value of 33 A, whichever is less.</td>
</tr>
<tr>
<td></td>
<td>External Sensor Input</td>
</tr>
<tr>
<td></td>
<td>Peak value less than or equal to 5 times the range.</td>
</tr>
</tbody>
</table>

CAUTION

- Use measurement cables that have adequate margins of withstand voltage and current capacity with respect to the voltage or current being measured. It should also have proper ratings that are suited to the measurement.
 - Example: When making measurements on a current of 20 A, use copper wires that have a conductive cross-sectional area of 4 mm².
- Connecting cables may cause radio interference in which case the user is required to correct the interference.
3.5 Wiring Precautions

Note

• After wiring, the wiring system must be selected. See section 4.1, “Selecting the Wiring System.”
• When measuring large currents, voltages or currents that contain high frequency components, take special care in dealing with mutual interference and noise when wiring.
• Keep the measurement cables as short as possible to minimize the loss between the circuit under measurement and the instrument.
• The thick lines on the wiring diagrams shown in sections 3.9 to 3.11 are the sections where the current flows. Use appropriate wires that are suitable for the current.
• In order to make accurate measurements of the voltage of the circuit under measurement, connect the cable to the circuit as closely as possible.
• In order to make correct measurements, separate the measurement cables as far away from the earth ground wires and the instrument’s case as possible to minimize the static capacitance to earth ground.
• To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, it is recommended that a three-voltage, three-current system using three-phase, three-wire 3P3W (3V3A) be used to make the measurement.
• If you supply current exceeding approximately 2.8 Arms to the 2-A input element, the protection circuit activates and bypasses the measurement circuit of the WT3000. This prevents damage to the measurement circuit. Because current does not flow through the measurement circuit of the WT3000, the measured value may become 0 A, but the input peak over-range indicator at the top section of the screen illuminates in red. If this happens, the measured value is approximately 0 A, but current is actually flowing through the circuit under measurement. Therefore, do not disconnect the wires to the measurement terminals.
3.6 Assembling the Adapter to Be Connected to the Voltage Input Terminal

Assembling the 758931 Safety Terminal Adapter

When connecting a measurement cable to the voltage input terminal of the WT3000, use the 758931 Safety Terminal Adapter that comes with the package or the 758923 Safety Terminal Adapter that is sold separately. When using the 758931 Safety Terminal Adapter, assemble it according to the following procedure.

- Assembling the Safety Terminal Adapter
 1. Remove approximately 10 mm of the covering from the end of the cable and pass it through the internal insulator.
 2. Insert the tip of the cable into the plug. Fasten the cable in place using the hexagonal wrench.
 3. Insert the plug into the internal insulator.
 4. Attach the external cover. Check that the cover does not come off.

Note

Once the cover is attached, disassembly is difficult. Use care when attaching the cover.

Below is an illustration of the adapter when the work is completed.
3.6 Assembling the Adapter to Be Connected to the Voltage Input Terminal

Explanation

Use the adapters that come with the WT3000 or the adapters and various sensors sold separately for the WT3000 according to the object being wired as follows:

- **Wiring to the Voltage Measurement Terminal**

![Diagram of Wiring to the Voltage Measurement Terminal]

When using the clamp-on probe that is sold separately, use it as follows:

- **Wiring to the Current Measurement Terminal**

![Diagram of Wiring to the Current Measurement Terminal]

* The current input terminal and EXT input terminal cannot be wired (used) simultaneously.
3.7 Wiring for Making Accurate Measurements

To make accurate measurements, wire the voltage input terminal and current input terminal by referring to the items below.

- **Effects of Stray Capacitance**
 When measuring a single-phase device, the effects of stray capacitance on the measurement accuracy can be minimized by connecting the current input terminal of the instrument to the side that is close to the earth potential of the power source (SOURCE).

 - Easily affected
 ![Diagram of easily affected connection](source)

 - Not easily affected
 ![Diagram of not easily affected connection](source)

- **Effects due to the Amplitude of the Measured Voltage and Current**

 - When the measurement current is relatively large
 Connect the voltage measurement terminal to the load side.

 ![Diagram of large current connection](source)

 - When the measurement current is relatively small
 Connect the current measurement terminal to the load side.

 ![Diagram of small current connection](source)

Explanation

For details on the effects of stray capacitance and the effects due to the amplitude of the measured voltage and current, see appendix 5, “For Making Accurate Measurements.”
3.8 Guide for Selecting the Method Used to Measure the Power

Select the measurement method according to the amplitude of the measured voltage or current from the table below. For details on the wiring methods, see the respective sections.

- **Measurement Method of Voltage**

<table>
<thead>
<tr>
<th>Voltage wiring</th>
<th>When the voltage is less than or equal to 1000 V</th>
<th>When the voltage exceeds 1000 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct input</td>
<td>See section 3.9</td>
<td>Direct input is not possible</td>
</tr>
<tr>
<td>VT (voltage transformer)</td>
<td></td>
<td>See section 3.11</td>
</tr>
</tbody>
</table>

- **Measurement Method of Current**

<table>
<thead>
<tr>
<th>Input element</th>
<th>When the current is less than or equal to 2 A</th>
<th>When the current exceeds 2 A</th>
<th>When the current is less than or equal to 30 A</th>
<th>When the current exceeds 30 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current wiring</th>
<th>When the voltage is less than or equal to 1000 V</th>
<th>When the voltage exceeds 1000 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct input</td>
<td>See section 3.9*</td>
<td>Direct input is not possible</td>
</tr>
<tr>
<td>Shunt-type current sensor</td>
<td>See section 3.10**</td>
<td>Shunt-type current sensors cannot be used</td>
</tr>
<tr>
<td>Clamp-type current sensor (voltage output type)</td>
<td>See section 3.10</td>
<td></td>
</tr>
<tr>
<td>Clamp-type current sensor (current output type)</td>
<td>See section 3.11</td>
<td></td>
</tr>
<tr>
<td>CT (current transformer)</td>
<td>See section 3.11</td>
<td></td>
</tr>
</tbody>
</table>

* Voltage: 1000 V or less (maximum allowable voltage that can be measured)
 600 V or less (rating voltage of EN61010-2-030)
 Do not touch the inside of the external current sensor input BNC connector.

** The voltage is less than or equal to 600 V.

- **Notes when Replacing Other Power Meters with the WT3000**

In three-phase, three-wire systems (3P3W) and three-phase, three-wire systems [(3P3W) 3V3A] (three-voltage, three-current systems), the wiring system may be different between the WT3000 and another product (another digital power meter) due to the differences in whether the reference voltage used to measure the line voltage (see appendix 4) is of S phase or T phase. To make correct measurements, see the referenced sections in the selection guide above and check the wiring method of the three-phase, three-wire system.

For example, if you replace the WT2000 (used in a three-phase, three-wire system) with the WT3000 and leave the wiring unchanged, the measured power of each element is different between the WT2000 and the WT3000. Refer to this manual and wire the system correctly.
3.9 Wiring the Circuit under Measurement for Direct Input

The measurement cable is wired directly from the circuit under measurement to the voltage/current input terminal. To prevent the possibility of electric shock and damage to the instrument, follow the precautions given in section 3.5, “Wiring Precautions.”

Connecting to the Input Terminal

• **Voltage Input Terminal**
 The terminal is a φ4-mm safety banana jack (female). Insert the safety terminal (the conductive parts are not exposed) into the voltage input terminal. When using the 758931 Safety Terminal Adapter that comes with the package, see section 3.6.

• **Current Input Terminal**
 • When the voltage of the circuit under measurement is being applied to the current input terminals, do not touch the current sensor input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.
 • When connecting measurement cables from an external current sensor to the current sensor input connector, remove the cables connected to the current input terminals. In addition, when the voltage of the circuit under measurement is being applied to the current sensor input terminal, do not touch the current input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.
 • The terminal is a binding post, and the screws are M6. Either wind the wire around the screw or pass the crimp-on lugs through the screw axis, then tighten firmly by holding the terminal knob.

CAUTION

• When doing so, make sure that no foreign objects are present in the contacts between the current input terminal and crimp-on lugs.
• Periodically check whether the current input terminal knob is loose, and whether any foreign objects are present in the contacts between the current input terminal and crimp-on lugs.

Number of Installed Input Elements and Wiring Systems

Limitations are placed on the wiring systems that can be selected depending on the number of input elements that are installed in the instrument. For example, three-phase, four-wire (3P4W) cannot be selected on models with two input elements. For details, see “Number of Installed Input Elements and Wiring Systems” in section 2.3, “Measurement Conditions.”
The assignment of elements to the input terminals in the figures of the wiring examples below varies depending on the number of installed input elements. For details, see "Number of Installed Input Elements and Wiring Systems" in section 2.3, "Measurement Conditions."

Note
- After wiring, the wiring system must be selected. See section 4.1, "Selecting the Wiring System."
- The thick lines on the wiring diagrams are the sections where the current flows. Use appropriate wires that are suitable for the current.

Wiring Example of a Single-Phase, Two-Wire System (1P2W)

If four input elements are available, four single-phase, two-wire systems can be set up. See section 3.7 for details on which wiring system below should be selected.

Wiring Example of a Single-Phase, Three-Wire System (1P3W)

If four input elements are available, two single-phase, three-wire systems can be set up (elements 1 and 2 and elements 3 and 4).
3.9 Wiring the Circuit under Measurement for Direct Input

Wiring Example of a Three-Phase, Three-Wire System (3P3W)
If four input elements are available, two three-phase, three-wire systems can be set up (elements 1 and 2 and elements 3 and 4).

Wiring Example of Three-Phase, Three-Wire (Three-Voltage, Three-Current System) [3P3W (3V3A)]
If four input elements are available, one three-phase, three-wire system (three-voltage, three-current system) can be set up (elements 1, 2, and 3 or elements 2, 3, and 4).

Wiring Example of a Three-Phase, Four-Wire System (3P4W)
If four input elements are available, one three-phase, four-wire system can be set up (elements 1, 2, and 3 or elements 2, 3, and 4).

Note
For the relationship between the wiring systems and the method of determining the measured values or computed values, see Appendix 1, "Symbols and Determination of Measurement Functions."
3.10 Wiring the Circuit under Measurement When Using the Current Sensor

To prevent the possibility of electric shock and damage to the instrument, follow the precautions given in section 3.5, “Wiring Precautions.”

If the maximum current value of the circuit under measurement exceeds the maximum range of the current input terminal as described below, an external sensor can be connected to the current sensor input connector in order to measure the current of the measurement circuit.

- 2-A input element
 When the maximum current exceeds 2 Arms
- 30-A input element
 When the maximum current exceeds 30 Arms

Current sensor output type

- In the wiring example in this section, a shunt-type current sensor or a clamp-type current sensor that outputs voltage can be used for an external current sensor.
- When using the clamp-type current sensor that outputs current, see section 3.11.

Connecting to the Input Terminal

- **Voltage Input Terminal**
 The terminal is a φ4-mm safety banana jack (female).
 Insert the safety terminal (the conductive parts are not exposed) into the voltage input terminal.
 When using the 758931 Safety Terminal Adapter that comes with the package, see section 3.6.

- **External Current Sensor Input Terminal**
 Connect an external sensor cable with the BNC connector (B9284LK, sold separately) to the external current sensor input connector.
 Remove the measurement cable connected to the current input terminal. Because the current sensor input terminal and the current input terminal are connected internally, connecting both terminals simultaneously not only results in measurement errors but also may cause damage to the instrument.
 In addition, when the voltage of the circuit under measurement is being applied to the current sensor input terminal, do not touch the current input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.

Number of Installed Input Elements and Wiring Systems

The selectable wiring systems vary depending on the number of input elements that are installed in the instrument. For details, see “Number of Installed Input Elements and Wiring Systems” in section 2.3, “Measurement Conditions.”
3.10 Wiring the Circuit under Measurement When Using the Current Sensor

Note

- After wiring, the wiring system must be selected. See section 4.1, “Selecting the Wiring System.”
- The thick lines on the wiring diagrams are the sections where the current flows. Use appropriate wires that are suitable for the current.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, it is recommended that a three-phase, three-wire system (three-voltage, three-current system) [3P3W (3V3A)] be used to make the measurement.
- The current sensor input transformation function can be used to transform the input signal to data that correspond to direct measurements. For the setup procedure, see section 4.4, “Setting the Measurement Range When Using the Current Sensor.”
- Note that the frequency and phase characteristics of the current sensor affect the measured data.
- Make sure you have the polarities correct when making the connections. Otherwise, the polarity of the measurement current will be reversed and correct measurements cannot be made. Be especially careful when connecting the clamp type current sensor, because it is easy to reverse the connection.
- To minimize error when using a shunt-type current sensor, note the following points when connecting the external sensor cable.
 - Connect the shielded wire of the external sensor cable to the L side of the shunt output terminal (OUT).
 - Minimize the area created between the wires connecting the current sensor to the external sensor cable. The effects due to the line of magnetic force (caused by the measurement current) and noise that enter this area of space can be reduced.

For a shunt-type current sensor, connect it to the power earth ground side as shown in the figure below. If you have to connect the sensor to the non-earth side, use a wire that is thicker than AWG18 (conductive cross-sectional area of approx. 1 mm²) between the sensor and the instrument to reduce the effects of common mode voltage. Take safety and error reduction into consideration when constructing an external sensor cable.

- When the circuit under measurement is not grounded and the signal is high in frequency or large in power, the effects of the inductance of the connection cable for the shunt-type current sensor become large. In this case, use an isolation sensor (CT, DC-CT, or clamp).
3.10 Wiring the Circuit under Measurement When Using the Current Sensor

The following wiring examples are for connecting shunt-type current sensors. When connecting a clamp-type current sensor that outputs voltage, substitute the shunt-type current sensor with the clamp-type. In addition, the assignment of elements to the input terminals in the following figure varies depending on the number of installed input elements. For details, see “Number of Installed Input Elements and Wiring Systems” in section 2.3, “Measurement Conditions.”

Wiring Example of a Single-Phase, Two-Wire System (1P2W) Using a Shunt-Type Current Sensor

Wiring Example of a Single-Phase, Three-Wire System (1P3W) Using a Shunt-Type Current Sensor
3.10 Wiring the Circuit under Measurement When Using the Current Sensor

Wiring Example of a Three-Phase, Three-Wire System (3P3W) Using a Shunt-Type Current Sensor

Wiring Example of a Three-Phase, Three-Wire System (Three-Voltage, Three-Current System) [3P3W (3V3A)] Using a Shunt-Type Current Sensor

Wiring Example of a Three-Phase, Four-Wire System (3P4W) Using a Shunt-Type Current Sensor

Note
For the relationship between the wiring systems and the method of determining the measured values or computed values, see Appendix 1, “Symbols and Determination of Measurement Functions.”
3.11 Wiring the Circuit under Measurement When Using the VT/CT

Connect a measurement cable from an external voltage transformer (VT) or current transformer (CT) to the voltage or current input terminal of the input element. Wire according to the procedure in this section also when using a clamp-type current sensor that outputs current.

To prevent the possibility of electric shock and damage to the instrument, follow the precautions given in section 3.5, “Wiring Precautions.”

An external VT can be connected to the voltage input terminal to make measurements when the maximum voltage of the circuit under measurement exceeds 1000 Vrms.

If the maximum current of the circuit under measurement exceeds the maximum range of the input element as described below, measurement can be made by connecting an external CT or a clamp-type current sensor that outputs current to the current input terminal.

• 2-A input element
 When the maximum current exceeds 2 Arms
• 30-A input element
 When the maximum current exceeds 30 Arms

Connecting to the Input Terminal

• Voltage Input Terminal
 The terminal is a φ4-mm safety banana jack (female). Insert the safety terminal (the conductive parts are not exposed) into the voltage input terminal. When using the 758931 Safety Terminal Adapter that comes with the package, see section 3.6.

• Current Input Terminal
 • When the voltage of the circuit under measurement is being applied to the current input terminals, do not touch the current sensor input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.
 • When connecting measurement cables from an external current sensor to the current sensor input connector, remove the cables connected to the current input terminals. In addition, when the voltage of the circuit under measurement is being applied to the current sensor input terminal, do not touch the current input terminals. Since these terminals are electrically connected inside the instrument, this act is dangerous.
 • The screws used on the terminal (binding post) are M6 screws. Use one of the following methods: wind the wire around the screw, use the 758921 Fork Terminal Adapter that is sold separately, or pass the crimp-on lugs through the screw axis. Then, tighten firmly by holding the terminal knob.
 • For the dimensions of the parts of the terminal, see section 3.9.
 • For precautions during and after connection of the current input terminal and crimp-on lugs, see section 3.9.

Number of Installed Input Elements and Wiring Systems

The selectable wiring systems vary depending on the number of input elements that are installed in the instrument. For details, see “Number of Installed Input Elements and Wiring Systems” in section 2.3, “Measurement Conditions.”

General Handling Precautions of the VT and CT

• Do not short the secondary side of the VT as it may damage the VT.
• Do not open the secondary side of the CT as it may damage the CT.

For other handling precautions of the VT or CT, follow the information that comes with the VT or CT that you are using.
Note

- After wiring, the wiring system must be selected. See section 4.1, “Selecting the Wiring System.”
- The thick lines on the wiring diagrams are the sections where the current flows. Use appropriate wires that are suitable for the current.
- Make sure you have the polarities correct when making the connections. Otherwise, the polarity of the measurement current will be reversed and correct measurements cannot be made. Be especially careful when connecting the clamp type current sensor, because it is easy to reverse the connection.
- The scaling function can be used to transform the input signal to data that correspond to direct measurements. For the setup procedure, see section 4.5, “Setting the Scaling Function When Using the VT/CT.”
- Note that the frequency and phase characteristics of the VT or CT affect the measured data.
- For safety reasons, this section indicates wiring diagrams in which the common terminals (+/-) of the secondary side of the VT or CT are grounded. However, the necessity of grounding and the grounding location (ground near the VT or CT or ground near the power meter) vary depending on the object being measured.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, it is recommended that a three-phase, three-wire system (three-voltage, three-current system) [3P3W (3V3A)] be used to make the measurement.

The following wiring examples are for connecting CTs. When connecting a clamp-type current sensor that outputs current, substitute the CT with the clamp-type current sensor. The assignment of elements to the input terminals in the following figure varies depending on the number of installed input elements. For details, see “Number of Installed Input Elements and Wiring Systems” in section 2.3, “Measurement Conditions.”

Wiring Example of a Single-Phase, Two-Wire System (1P2W) Using VT and CT

![1P2W Wiring Diagram](image)

Wiring Example of a Single-Phase, Three-Wire System (1P3W) Using VT and CT

![1P3W Wiring Diagram](image)
3.11 Wiring the Circuit under Measurement When Using the VT/CT

Wiring Example of a Three-Phase, Three-Wire System (3P3W) Using VT and CT

Wiring Example of a Three-Phase, Three-Wire System (Three-Voltage, Three-Current System) [3P3W (3V3A)] Using VT and CT

Wiring Example of a Three-Phase, Four-Wire System (3P4W) Using VT and CT

Note
For the relationship between the wiring systems and the method of determining the measured values or computed values, see Appendix 1, “Symbols and Determination of Measurement Functions.”
3.12 Setting the Date/Time

Procedure

1. Press MISC to display the Misc menu.
2. Press the Date/Time soft key to display the Date/Time dialog box.

Turning ON/OFF the Date/Time Display
3. Press the cursor keys to select Display.
4. Press SET to select ON or OFF.

Setting the Date or Time Manually
If the Ethernet interface option is installed, proceed to step 5.
If it is not, proceed to step 7.
5. Press the cursor keys to select Type.
7. Press the cursor keys to select the Date (year, month, and day) or Time (hour, minute, second) box.
8. Press SET to display the entry box.
9. Press the cursor keys to set the year, month, date, hour, minute, or second that you selected in step 5.
10. Press SET or ESC to close the box.
11. Repeat steps 5 to 8 to set the entire year, month, date, hour, minute, and second.
12. Press the cursor keys to select Set.
13. Press SET. If ON was selected in step 4, the new date and time are displayed in the lower right corner of the screen. If the procedure is aborted without pressing SET, the new settings are not reflected on the display.

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
Before Starting Measurements

3.12 Setting the Date/Time

- Setting the Time Using the SNTP Server
 (Available when the Ethernet interface option is installed)
 To obtain the time from the SNTP server, you must first connect to the network and then to the SNTP server. For details, see section 5.2, “Setting TCP/IP” and section 5.7, “Setting the Time Difference from GMT (Greenwich Mean Time)/Setting SNTP” in the Expansion Function User’s Manual IM760301-51E.
 5. After step 4, press the cursor keys to select Type.
 6. Press SET to set Type to SNTP.
 7. Press the cursor keys to select Time Hour under Time Difference from GMT.
 8. Press SET. An entry box appears.
 9. Press the cursor keys to set the hour.
 10. Press SET to confirm.
 11. Likewise, set the minute.
 12. Press the cursor keys to select Set and press SET. The time is obtained from the SNTP server, and the date and time calculated from the specified GMT time difference are set.

Explanation

- Turning ON/OFF the Date/Time display
 You can select whether or not to display the date and time in the lower right corner of the screen.
 - OFF: Do not display the date and time.
 - ON: Display the date and time.

- Setting the Date/Time
 - Setting the Date
 You can set the date in the form YY/MM/DD (year/month/day). Set the lower two digits of the year.
 - Setting the Time
 You can set the time in the form HH:MM:SS (hour:minute:second). The hour is set using a 24-hour clock.

- Setting the Time Using the SNTP Server
 You can use the SNTP server time to set the date and time on the instrument. This function is available if the Ethernet interface option is installed. For details on the SNTP and GMT, see section 5.7, “Setting the Time Difference from GMT (Greenwich Mean Time)/Setting SNTP” in the Expansion Function User’s Manual IM760301-51E. The time difference from GMT specified here is linked to the setting of 5.7 above.

Note

- The date and time information is backed up with the lithium battery when the power is turned OFF.
- The instrument contains leap year information. The instrument determines the leap year calendar when the new settings are confirmed. If you enter [2/29] on a non-leap year, an error message will be displayed.
3.13 Initializing the Settings

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

Note

Check that it is okay to initialize the settings before actually initializing the settings. You cannot set the settings back after initialization. It is recommended that the setup parameters be saved (see section 9.3) before initialization.

1. Press MISC to display the Misc menu.
3. Press the cursor keys to select OK.
4. Press SET to execute the initialization.

To cancel the initialization, select Cancel in step 3 and press SET.
3.13 Initializing the Settings

Explanation

The values specified by the panel keys can be reset to the factory default values. This is useful when you wish to clear previous settings or start the settings from scratch. For details on the initial settings, see appendix 2, “List of Initial Settings and Display Order of Numeric Data.”

- **Settings That Cannot Be Initialized**
 - Date/Time settings
 - Menu and message language settings
 - Setting of the time difference from GMT (when the Ethernet option is installed)
 - Designation of file to be displayed (Filter)
 - File utility operation (Function)
 - Settings related to the GP-IB communication, serial communication (option), USB communication (option) and Ethernet communication (option).

- **Initializing at Power Up**
 If the power switch is turned ON while holding down RESET, the WT3000 powers up using initial settings. In this case, “Settings That Cannot Be Initialized” as indicated above excluding the date and time are also initialized. A message indicating that settings have been initialized is shown on the screen.
3.14 Entering Values and Character Strings

Entering Values

After selecting the setup parameter with the SET key and soft keys, the value can be changed using the cursor keys. Use the left and right cursor keys to move along the digits and the up and down cursor keys to set the value of that digit.

Note

Some of the parameters that can be changed using the cursor keys are reset to their initial values when the RESET key is pressed.

Entering Character Strings

The equation for the user-defined function, units, file names, and comments can be entered using the keyboard that is displayed on the screen. The cursor keys and SET are used to operate the keyboard to enter the character strings.
3.14 Entering Values and Character Strings

- **Entering the Equation for the User-Defined Function**
 The figure below shows the keyboard that appears when setting the equation for the user-defined function. Long equations can be temporarily held in the internal memory so that it can be used in other equations.

- **Entering the Equation and Temporarily Storing It**
 1. Press the ▲ and ▼ cursor keys to select the desired character. You can move the cursor quickly by holding down ▲ or ▼ to make the cursor skip. (Long function names can be selected by pressing one key.)
 2. Press SET to enter characters in the entry box. If there are characters already in the entry box, use the ◀ and ▶ cursor keys to select the entry position.
 3. Repeat steps 1 and 2 to enter all the characters.
 4. After entering all the characters, select ENT on the keyboard and press SET. The string is confirmed and the keyboard disappears. At the same time, the equation is temporarily stored in the internal memory.
 - When the equation is not correct and an error message is displayed, it is still stored in the memory.
 - Up to five equations can be stored. After five equations have been stored, a new equation overwrites the oldest equation.

- **Recalling the Temporarily Stored Equation**
 The procedure varies depending on the WT3000 firmware version as follows:
 Version 1.0x
 1. Select ☞ on the keyboard and press SET. A window opens and the temporarily stored equation is displayed.
 2. Select the equation you wish to recall and press SET. The selected equation appears in the entry box on the keyboard.
 - If there are characters already in the entry box, they are overwritten with the recalled equation.
 3. Correct the recalled equation according to steps 1 to 4 in “Entering the equation and temporary storage” described above and enter it. At this point, the equation is temporarily stored in the internal memory. The temporary memory is cleared when the power is turned OFF.

 ![The window displaying the equation that is stored in the memory](image)

 Select this key to display the window on the right

 Version 2.00 or later
 1. Press the ◊ soft key. Each time the soft key is pressed the temporarily stored strings are displayed in the entry box of the keyboard in order. When the eight strings that are temporarily stored are displayed, the most recent string is displayed again.
 - If there are characters already in the entry box, they are overwritten with the recalled string.
 2. Correct the recalled equation according to steps 1 to 4 in “Entering the Equation and Temporarily Storing It” described above and enter it. The string is temporarily stored in the internal memory.
3.14 Entering Values and Character Strings

- Entering the Unit, File Name, and Comment
 (the server name, user name, password, and e-mail address, etc. for Ethernet communication)

The figure below shows the keyboard that appears when entering the file name or comment. File names and comments can be temporarily held in the internal memory so that they can be used in other file names and comments.

- Entering the File Name and Comment and Temporarily Storing Them
 1. Press the cursor keys to select the desired character. You can move the cursor quickly by holding down ▲ or ▼ to make the cursor skip. You can also press the ▲ and ▼ soft keys to move the cursor vertically.
 2. Press SET to enter characters in the entry box.
 If there are characters already in the entry box, use the ▲ and ▼ cursor keys to select the entry position.
 3. Repeat steps 1 and 2 to enter all the characters.
 4. After entering all the characters, select ENT on the keyboard and press SET. The string is confirmed and the keyboard disappears (you can also press the ENT key to achieve the same result). At the same time, the confirmed string is temporarily stored in the internal memory.
 Up to 8 sets of strings can be stored. After eight strings have been stored, a new string overwrites the oldest string.

- Recalling the Temporarily Stored String
 1. Press the Œ soft key. Each time the soft key is pressed the temporarily stored strings are displayed in the entry box of the keyboard in order. When the eight strings that are temporarily stored are displayed, the most recent string is displayed again.
 If there are characters already in the entry box, they are overwritten with the recalled string.
 2. Correct the recalled equation according to steps 1 to 4 in “Entering the File Name and Comment and Temporarily Storing Them” described above and enter it. The string is temporarily stored in the internal memory.
3.14 Entering Values and Character Strings

- **Keys Other Than the Character Keys**
 - BS: Deletes the character before the entry position.
 - INS: Switches between insert and overwrite mode. During insert mode, the INSERT indicator on the keyboard illuminates. When a new character is entered in insert mode, the new character is placed at the entry position and all following characters are moved backward.
 - CLR: Clears all displayed characters. On the keyboard used to enter the file name and comment, RESET on the front panel can also be used to achieve the same result.
 - CAPS: Switches between uppercase and lowercase.
 - SPACE: Enters a space.
 - ENT: Enters the displayed characters.

- **Number of Characters and Types That Can Be Used**

<table>
<thead>
<tr>
<th>Item</th>
<th>Number of Characters</th>
<th>Characters That Can Be Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time</td>
<td>Specified number</td>
<td>0 to 9 (/, :)</td>
</tr>
<tr>
<td>Equation</td>
<td>1 to 50 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
<tr>
<td>Unit</td>
<td>1 to 8 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
<tr>
<td>File name</td>
<td>1 to 8 characters</td>
<td>0-9, A-Z, %, _, () (parentheses), – (minus sign)</td>
</tr>
<tr>
<td>Comment</td>
<td>0 to 25 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
<tr>
<td>Server name</td>
<td>0 to 40 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
<tr>
<td>User name</td>
<td>0 to 40 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
<tr>
<td>Password</td>
<td>0 to 40 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
<tr>
<td>E-mail address</td>
<td>0 to 40 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
</tbody>
</table>

(the @ character cannot be entered consecutively.)

Note

File names are not case-sensitive. Comments are case-sensitive. In addition, the following file names cannot be used due to limitations of MS-DOS.

AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
3.15 Entering Character Strings on the USB Keyboard

On models with the USB port (peripheral device) option, you can connect a USB keyboard and enter file names, comments, and so on.

USB PERIPHERAL Connector

Use a USB cable to connect the USB keyboard to the USB PERIPHERAL connector on the left side of the front panel. There are two USB PERIPHERAL connectors (ports).

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS: +5 V</td>
</tr>
<tr>
<td>2</td>
<td>D–: -Data</td>
</tr>
<tr>
<td>3</td>
<td>D+: *Data</td>
</tr>
<tr>
<td>4</td>
<td>GND: Ground</td>
</tr>
</tbody>
</table>

Keyboards That Can Be Used

The following keyboards conforming to USB Human Interface Devices (HID) Class Ver1.1 can be used.

- When the USB keyboard language is English: 104 keyboard
- When the USB keyboard language is Japanese: 109 keyboard

Select either keyboard in section 3.19.

Note

- For USB keyboards that have been tested for compatibility, contact your nearest YOKOGAWA dealer.
- Do not connect USB devices other than a USB keyboard or a USB memory to the USB PERIPHERAL connector.
- The WT3000 has two USB PERIPHERAL ports. However, USB devices whose maximum consumption current exceeds 100 mA cannot be connected simultaneously to the two ports.

Connection Procedure

Connect the USB keyboard to the WT3000 directly using a USB cable as shown below. You can connect/disconnect a USB cable at any time regardless of the power ON/OFF state of the WT3000 (supports hot-plugging). Connect the type A connector of the USB cable to the WT3000; connect the type B connector to the keyboard. When the power switch is ON, the keyboard is detected and enabled approximately six seconds after it is connected.
3.15 Entering Character Strings on the USB Keyboard

Note

- Connect the keyboard directly without going through a USB hub.
- Do not connect USB devices other than a USB keyboard or a USB memory to the USB PERIPHERAL connector.
- Do not connect multiple keyboards.
- Holding down a key on the keyboard does not enter the character or value repetitively.
- Do not connect and disconnect multiple USB devices repetitively. To do so, allow at least 10 s between connection and disconnection.
- Do not connect or disconnect the USB cable after the power is turned ON until key operation is ready (approximately 20 to 30 s).

Confirming the Keyboard That Is Connected

To confirm the keyboard that is connected to the WT3000, carry out the procedure below.

1. Press **MISC**.
2. Press the **USB** soft key.
3. Press the **Device List** soft key to display the USB Device List. Check the USB keyboard that is connected.

Entering File Names, Comments, Etc.

When a keyboard is displayed on the screen, you can enter the file name, comment, and other items using a USB keyboard. The character that is entered through each key of the USB keyboard varies depending on the keyboard type.

Executing functions corresponding to the keys on the front panel of the WT3000

The functions corresponding to the front panel keys of the WT3000 are assigned to the keys on the USB keyboard. By pressing the keys on the keyboard, you can operate the WT3000 in a similar fashion. The assignment of functions varies depending on the keyboard type. For details, see appendix 9.
3.16 Switching the Measurement Mode and Display

Procedure

Measurement modes other than normal measurement mode can be used on models with the advanced computation (/G6), voltage fluctuation and flicker measurement (/FL), or cycle-by-cycle measurement (/CC) option.

 - **Enabling Normal Measurement or Wide Bandwidth Harmonic Measurement Mode**
 - **Numeric Display**
 1. Press **NUMERIC** to display numeric values.
 - **Waveform Display**
 1. Press **WAVE**. The waveform is displayed in normal measurement mode.
 - The waveform is not displayed in wide bandwidth harmonic measurement mode.
 - **Trend, Bar Graph, Vector, and Split Displays**
 1. Press **OTHERS** to display the Others menu.
 2. Press a soft key to select the display mode.
 - The trend is not displayed in wide bandwidth harmonic measurement mode.
 - **Enabling IEC Harmonic Measurement, Waveform Computation, FFT, Voltage Fluctuation and Flicker Measurement, or Cycle-by-Cycle Measurement Mode**
 1. Press **OTHERS** to display the Others menu.
 2. Press a soft key to select the measurement mode.
Before Starting Measurements

3.16 Switching the Measurement Mode and Display

- Switching the Display in Normal Measurement Mode (or Wide Bandwidth Harmonic Measurement Mode)
 Carry out the procedure given in “Enabling Normal Measurement or Wide Bandwidth Harmonic Measurement Mode” on the previous page.

- Switching between Normal Measurement Mode and Wide Bandwidth Harmonic Measurement Mode
 1. Press HRM SET to display the Harmonics menu.
 2. Press the Freq Band soft key to select Normal or Wide.

- Measurement Mode Indication
 The measurement mode is displayed at the upper left of the screen as shown below.
3.16 Switching the Measurement Mode and Display

<table>
<thead>
<tr>
<th>Measurement Mode</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal measurement mode</td>
<td>Normal Mode</td>
</tr>
<tr>
<td>Wide bandwidth harmonic measurement mode*1</td>
<td>Wide-Band Harmonics</td>
</tr>
<tr>
<td>IEC harmonic measurement mode*1</td>
<td>IEC Harmonics Mode</td>
</tr>
<tr>
<td>Waveform computation mode*1</td>
<td>Math Mode</td>
</tr>
<tr>
<td>FFT mode*1</td>
<td>FFT Mode</td>
</tr>
<tr>
<td>Voltage Fluctuation and Flicker Measurement Mode*2</td>
<td>Flicker Mode</td>
</tr>
<tr>
<td>Cycle-by-Cycle Measurement Mode*3</td>
<td>Cycle by Cycle Mode</td>
</tr>
</tbody>
</table>

*1 Can be set only on models with the advanced computation (/G6) option.
*2 Can be set only on models with the voltage fluctuation and flicker measurement (/FL) option.
*3 Can be set only on models with the cycle-by-cycle measurement (/CC) option.

Note

When waveforms are displayed in normal measurement mode, the measurement mode indication is set to Normal Mode (Trg). For details, see section 6.1.

There are two methods to switch the measurement mode. One is to use the DISPLAY key, and the other is to use the HRM SET key.

Press the DISPLAY key (the black arrow in the figure below).

If you change from IEC harmonic, waveform computation, FFT, voltage fluctuation and flicker measurement, or cycle-by-cycle measurement mode to normal measurement/wide bandwidth harmonic measurement mode, the measurement mode that was valid before changing to IEC harmonic, waveform computation, FFT, voltage fluctuation and flicker measurement, or cycle-by-cycle measurement mode is enabled. For example, if you change from wide bandwidth harmonic measurement mode to IEC harmonic mode and then press NUMERIC, wide bandwidth harmonic measurement mode is enabled, not normal measurement mode.

- **Switching between Normal Measurement Mode and Wide Bandwidth Harmonic Measurement Mode**

Press the HRM SET key and switch using the Harmonics menu (the gray yellow in the figure above).
3.16 Switching the Measurement Mode and Display

Explanation

You can select the display on the WT3000 as indicated below. On models with the advanced computation option, you can select the measurement mode and display in addition to normal measurement mode as shown on the next page.

- **Display Modes in Normal Measurement Mode**

<table>
<thead>
<tr>
<th>Display mode</th>
<th>Normal measurement mode</th>
<th>Without the advanced computation option</th>
<th>With the advanced computation option*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power measurement U_{rms} (numeric display)</td>
<td></td>
<td></td>
<td>See chapter 7 in the Expansion Function User’s Manual (IM760301-51E).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106.183 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{rms}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>566.992 mA</td>
<td>For the operating procedure, see chapter 5. For a functional description, see 2.4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55.8659 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.92793</td>
<td></td>
</tr>
<tr>
<td>Waveform display</td>
<td></td>
<td>For the operating procedure, see chapter 6. For a functional description, see 2.7.</td>
<td></td>
</tr>
<tr>
<td>Trend display</td>
<td></td>
<td>For the operating procedure, see chapter 7. For a functional description, see 2.8.</td>
<td></td>
</tr>
<tr>
<td>Bar graph display</td>
<td></td>
<td>Bar graph display is not possible. See chapter 7 in the Expansion Function User’s Manual (IM760301-51E).</td>
<td></td>
</tr>
<tr>
<td>Vector display</td>
<td></td>
<td>Vector display is not possible. See chapter 7 in the Expansion Function User’s Manual (IM760301-51E).</td>
<td></td>
</tr>
</tbody>
</table>

*1 The $/G5$ (harmonic measurement) option is equivalent to the harmonic measurement in normal measurement mode.

- **Split Display**

 The display is divided into top and bottom halves, and two types of displays can be shown simultaneously.
3.16 Switching the Measurement Mode and Display

- **Measurement Modes and Display Modes on Models with the Advanced Computation (/G6), Voltage Fluctuation and Flicker Measurement (/FL), or Cycle-by-Cycle Measurement (/CC) Option**

<table>
<thead>
<tr>
<th>Display Mode</th>
<th>Measurement Mode</th>
<th>Voltage Fluctuation and Flicker</th>
<th>Cycle by Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/G6 Wide Bandwidth Harmonic</td>
<td>IEC Harmonic</td>
<td>Waveform Computation</td>
</tr>
<tr>
<td>Power measurement (Numeric)</td>
<td>Yes*1</td>
<td>Yes*1</td>
<td>Yes</td>
</tr>
<tr>
<td>Waveform display (Wave)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Trend display (Trend)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bar graph display (Bar)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Vector display (Vector)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Waveform computation display (Math)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>FFT display (FFT)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Voltage Fluctuation and Flicker</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cycle by Cycle</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Yes: Selectable. No: Not selectable.

*1 The rms values of the voltage or current are the total of the specified harmonic components, not the values that include all frequency components. For details, see chapter 7 in the Extension Function User's Manual (IM760301-51E).

*2 The waveform can be monitored using the Harmonic/Flicker Measurement Software sold separately.
3.17 Displaying the Setup Parameter List

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

• Displaying the Relation Table of Elements and Measurement Ranges
 1. Press SHIFT+WIRING(INPUT INFO.). The relation table of measurement ranges, input filters, transformation ratios, scaling factors, and other parameters are displayed for each element.

• Displaying the Relation Table of Rotating Speeds and the Input Ranges of Torque*1
 2. Press PAGE ▼ to display the list of motor settings. A relation table of the rotating speed and the input range, filter, scaling factor, unit, and synchronization source of torque, number of poles, frequency measurement source, and other parameters is displayed.
*1 Displayed only on models with the motor evaluation function (motor version).

• Displaying the Relation Table of Trend Targets and Measurement Functions
 2. Press PAGE ▼ to display the list of trend settings. The relation table of trend targets and measurement functions is displayed.

• Displaying the Relation Table of D/A Output Channels and Measurement Functions*2
 2. Press PAGE ▼ to display the list of D/A output settings. The relation table of D/A output channels and measurement functions is displayed.
*2 Displayed only on models with the D/A output (option).

• Closing the List of Setup Parameters
 3. Press SHIFT+WIRING (INPUT INFO.). The list of setup parameters closes.

Explanation

The setup parameter list is shown as in the example on the next page.

Note

The relation table of elements and measurement ranges and the relation table of the measurement ranges of the motor evaluation function show the settings that existed when the measurement was carried out. If you change the parameters such as the measurement range while the hold function is ON, the change is not reflected in the relation table.
3.17 Displaying the Setup Parameter List

- Relation Table of Elements and Measurement Ranges (Page 1)
 The following figure shows an example when the crest factor is set to 3.

Power Element Settings

<table>
<thead>
<tr>
<th>Element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring</td>
<td>5P2n</td>
<td>1P2n</td>
<td>5P2n</td>
<td>1P2n</td>
</tr>
<tr>
<td>Voltage</td>
<td>1080Vrms</td>
<td>1080Vrms</td>
<td>1080Vrms</td>
<td>1080Vrms</td>
</tr>
<tr>
<td>Current</td>
<td>100A</td>
<td>100A</td>
<td>100A</td>
<td>100A</td>
</tr>
<tr>
<td>Sine Ratio</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Filter</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Freq Filter</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Scaling	1.0000	1.0000	1.0000	1.0000
Vf Ratio	1.0000	1.0000	1.0000	1.0000
CF Ratio	1.0000	1.0000	1.0000	1.0000
Factor	1.0000	1.0000	1.0000	1.0000
Sync Source	1	2	3	4

- Relation Table of the Rotating Speed of Motor Evaluation Function (Motor Version) and Input Ranges of Torque (Page 2)
 Displayed only on models with the motor evaluation function (motor version).

Motor Element Settings

- Relation Table of Trend Targets and Measurement Functions (Page 3)
 Trend Settings

- Relation Table of D/A Output Channels and Measurement Functions (Page 4)
 Displayed only on models with the D/A output (option).

D/A Output Settings

<table>
<thead>
<tr>
<th>Ch.1</th>
<th>Ch.2</th>
<th>Ch.3</th>
<th>Ch.4</th>
<th>Ch.5</th>
<th>Ch.6</th>
<th>Ch.7</th>
<th>Ch.8</th>
<th>Ch.9</th>
<th>Ch.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
</tr>
<tr>
<td>Ch.11</td>
<td>Ch.12</td>
<td>Ch.13</td>
<td>Ch.14</td>
<td>Ch.15</td>
<td>Ch.16</td>
<td>Ch.17</td>
<td>Ch.18</td>
<td>Ch.19</td>
<td>Ch.20</td>
</tr>
</tbody>
</table>
3.18 Selecting the Message Language

Procedure

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **MISC** to display the Misc menu.
2. Press the **Config** soft key to display the Config menu.

Selecting the Message Language

3. Press the **Message Language** soft key to display the Message menu.
4. Press the **ENG** or **JPN** soft key to select the message language.

Selecting the Menu Language

3. Press the **Menu Language** soft key.
4. Press the **JPN** or **ENG** soft key to select the menu language.

<table>
<thead>
<tr>
<th>Message Language</th>
<th>Config Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>JPN</td>
</tr>
<tr>
<td>Key Lock</td>
<td>Key Lock</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Shift Lock</td>
<td>Shift Lock</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Cursor Factor</td>
<td>Cursor Factor</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
3.18 Selecting the Message Language

Explanation

- **Selecting the Message Language**
 An error message is displayed when an error occurs. Select the language to use to display these messages and help messages (see section 10.8) from the choices below. The error codes for the error messages are the same for both English and Japanese. For details on the error messages, see section 11.2.
 - JPN: Japanese
 - ENG: English

- **Selecting the Menu Language**
 The language used on the menu can be selected from the following:
 - JPN: Japanese
 - ENG: English
3.19 Setting the USB Keyboard Language

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press MISC to display the Misc menu.
2. Press the USB soft key to display the USB menu.
3. Press the Keyboard soft key to select ENG or JPN.

Explanation

Set the language when entering file names, comments, and other items from the USB keyboard (see section 3.15) on models with the USB port (peripheral devices) option. The following keyboards conforming to USB Human Interface Devices (HID) Class Ver1.1 can be used.

- ENG: 104 keyboard
- JPN: 109 keyboard

The character that is entered through each key of the USB keyboard varies depending on the keyboard type. For details, see appendix 9.

Note

For USB keyboards that have been tested for compatibility, contact your nearest YOKOGAWA dealer.
4.1 Selecting the Wiring System

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press WIRING to display the Wiring menu.

- Selecting the Wiring System Pattern
2. Press the Wiring Setting soft key to display the Wiring Setting dialog box.
3. Press the cursor keys to select the target element.

Example in which four elements are installed

![Wiring Setting Dialog Box]

4. Press SET. The pattern selection window opens.
5. Press the cursor keys to select the pattern.
6. Press SET to confirm the new pattern.

Example in which four elements are installed

![Pattern Selection Window]
4.1 Selecting the Wiring System

Explanation

- **Wiring System Pattern**
 - The five wiring systems below are available. Limitations are placed on the wiring systems that can be selected depending on the number of input elements that are installed in the instrument.
 - 1P2W (single-phase, two-wire), 1P3W (single-phase, three-wire), 3P3W (three-phase, three-wire), 3P4W (three-phase, four-wire), and 3P3W (3V3A, three-voltage, three-current)
 - The input element assignment to wiring units \(\sum A \) and \(\sum B \) is determined from the wiring system pattern. This allows \(\sum \) functions of voltage, current, active power, apparent power, reactive power, power factor, phase difference, and other parameters to be determined. For the relationship between the wiring system and the determination of the \(\sum \) function, see appendix 1.
 - The following table shows the relationship between the number of installed elements, the selectable wiring system patterns, and the assignment of input elements to wiring units \(\sum A \) or \(\sum B \).

<table>
<thead>
<tr>
<th>Installed input elements</th>
<th>1P2W</th>
<th>1P2W</th>
<th>1P2W</th>
<th>1P2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring system Pattern 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring system Pattern 2</td>
<td>1P3W or 3P3W: (\sum A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring system Pattern 3</td>
<td>1P3W or 3P3W(3V3A): (\sum A)</td>
<td>1P2W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring system Pattern 4</td>
<td>3P4W or 3P3W(3V3A): (\sum A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring system Pattern 5</td>
<td>1P3W or 3P3W: (\sum A)</td>
<td>1P3W or 3P3W(3V3A): (\sum A)</td>
<td>1P3W or 3P3W(3V3A): (\sum A)</td>
<td>1P2W</td>
</tr>
</tbody>
</table>

Note

- Select the wiring system to match the circuit under measurement that is actually wired. The method in which the \(\sum \) function is determined varies depending on the wiring system. If the selected wiring system does not match the actual circuit, measurements and computation will not be correct.
- For the relationship between the wiring system and the determination of the \(\sum \) function, see appendix 1.
4.1 Selecting the Wiring System

- **Wiring System Display**
 The wiring system configuration is displayed at the right side of the screen. Because it is displayed behind the menu, press the ESC key to hide the menu (allowing the configuration to be viewed). Below are examples showing the wiring systems on a model with four input elements installed.

<table>
<thead>
<tr>
<th>When elements 1 to 4 are set to single-phase two-wire</th>
<th>When elements 1 and 2 are set to single-phase, three-wire and elements 3 and 4 are set to three-phase, three-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Settings of Elements Grouped as a Wiring Unit**
 If the independent setting of input elements is OFF and a wiring system other than 1P2W is selected when the measurement range or synchronization source setting of each input element is different, these settings are changed as follows:
 - The measurement range is set to the maximum range on all input elements included in the wiring unit. The external sensor input range has precedence over the direct input range for the current range.
 - The voltage/current mode and auto range settings are changed to match the settings of the input element with the maximum measurement range. If multiple input elements with maximum measurement range exist, the settings of the input element with the smallest input element number takes precedence.
 - The synchronization source setting is changed to match the setting of the input element with the smallest input element number among the input elements included in the wiring unit.

When you press the ELEMENT key to select the element to be configured, the LEDs of input elements in the wiring unit illuminate simultaneously.
4.2 Selecting Independent Setting of Input Elements

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

• Turning ON/OFF the Independent Setting
 1. Press WIRING to display the Wiring menu.
 2. Press the Element Independent soft key to select ON or OFF.
4.2 Selecting Independent Setting of Input Elements

Explanation

In the wiring system settings, you can select whether to set the measurement range or synchronization source of input elements in the same wiring unit collectively or independently.

- **Turning ON/OFF the Independent Setting of Input Elements**

 For example, assume that the wiring system on a model with three input elements is set as follows:

 Input elements 1 to 3: Three-phase, four-wire system (3P4W). Input elements 1 to 3 are assigned to a single wiring unit ΣA.

 - **ON**

 The measurement range or synchronization source can be set independently for each input element included in the wiring unit.

 - **OFF**

 The measurement range or synchronization source of input elements 1 to 3 is set to the same setting. This is convenient in that the settings of the measurement range and synchronization source of all input elements included in the wiring unit can be done simultaneously when measuring a three-phase device.

- **Settings That Are Matched between Input Elements When the Independent Setting of Input Elements Is Turned OFF**

 - Measurement range (including auto range ON/OFF)

 - Voltage/Current mode

 - Synchronization source setting

- **Settings That Can Be Set Independently Even When the Independent Setting of Input Elements Is Turned OFF**

 - Scaling value (VT ratio, CT ratio, and power coefficient)

 - Input filter (line filter and frequency filter)

 These settings can be set independently for each input element regardless of whether the independent setting of input elements is turned ON/OFF.

- **If a wiring unit (ΣA or ΣB) is specified and the independent setting of input elements is changed from ON to OFF, the measurement range and synchronization source settings of each input element are changed as follows:**

 - The measurement range is set to the maximum range on all input elements included in the wiring unit. The external sensor input range has precedence over the direct input range for the current range.

 - The voltage/current mode and auto range settings are changed to match the settings of the input element with the maximum measurement range. If multiple input elements with maximum measurement range exist, the settings of the input element with the smallest input element number takes precedence.

 - The synchronization source setting is changed to match the setting of the input element with the smallest input element number among the input elements included in the wiring unit.
4.3 Setting the Measurement Range for Direct Input

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

- **Selecting the Target Element**
 1. Press ELEMENT to select the target element. The corresponding element indicator above of the ELEMENT key illuminates. To select all elements, press SHIFT+ELEMENT (ALL).

- **Setting the Voltage Range**
 2. Press the voltage range selection key (UP ▲ and DOWN ▼ keys) to set the voltage range. The specified range is displayed with the voltage range indicator to the left of the select keys and on the upper-right corner of the screen where the element is displayed.
 - Press the voltage range UP key to increase the voltage range.
 - Press the voltage range DOWN key to decrease the voltage range.
 - Press AUTO to specify auto range. The AUTO key illuminates.

- **Setting the Current Range**
 3. Check that the EXT SENSOR key is not illuminated. If it is, press EXT SENSOR. The EXT SENSOR key turns OFF.

- **Setting the Current Range**
 4. Press the current range selection key (UP ▲ and DOWN ▼ keys) to set the current range. The specified range is displayed with the current range indicator to the left of the select keys and on the upper-right corner of the screen where the element is displayed.
 - Press the current range UP key to increase the current range.
 - Press the current range DOWN key to decrease the current range.
 - Press AUTO to specify auto range. The AUTO key illuminates.

5. Repeat steps 1 and 4 to set the measurement range of all elements.
4.3 Setting the Measurement Range for Direct Input

Explanation

- **Display Position of the Target Element and Specified Range**
 When a voltage or current range selection key is pressed, the element is displayed in the voltage or current range indicator (7-segment LED) and at the upper-right corner of the screen.

 Example of the display at the upper-right corner

<table>
<thead>
<tr>
<th>Element</th>
<th>Voltage range</th>
<th>Voltage mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>1000 Vrms</td>
<td>Auto</td>
</tr>
<tr>
<td>U1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Selecting the Target Element to Be Configured**
 Only the indicators of installed elements illuminate sequentially. When the independent setting of input elements is OFF, the element switches for each wiring unit according to the wiring system.

- **Setting the Voltage and Current Ranges**
 There are two types of ranges, fixed and auto.

 - **Fixed Range**
 The range is set in reference to the RMS value of the input signal.

 - **Voltage Range**
 - When the crest factor is set to 3
 Select 15 V, 30 V, 60 V, 100 V, 150 V, 300 V, 600 V, or 1000 V.
 - When the crest factor is set to 6
 Select 7.5 V, 15 V, 30 V, 50 V, 75 V, 150 V, 300 V, or 500 V.

 - **Current range**
 - 2-A input element
 - When the crest factor is set to 3
 Select 5 mA, 10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 mA, 1 A, or 2 A.
 - When the crest factor is set to 6
 Select 2.5 mA, 5 mA, 10 mA, 25 mA, 50 mA, 100 mA, 250 mA, 500 mA, or 1 A.
 - 30-A input element
 - When the crest factor is set to 3
 Select 500 mA, 1 A, 2 A, 5 A, 10 A, 20 A, or 30 A.
 - When the crest factor is set to 6
 Select 250 mA, 500 mA, 1 A, 2.5 A, 5 A, 10 A, or 15 A.
4.3 Setting the Measurement Range for Direct Input

Note
- The range is set in reference to the RMS value of the input signal. For example, if a 100-Vrms sinusoid is to be applied, set the range to 100 V.
- When measuring a signal other than a sine wave such as a distorted wave, accurate measurements can be obtained by selecting the smallest measurement range that does not meet the conditions below.
 - The input peak over-range indicator at the top center of the screen illuminates or blinks.
 - The measured values of the voltage and current indicate over range [-OL-].
- The peak over-range indicator may not illuminate or blink in the following cases.
 - If the pulse width is narrow, and the peak value of the waveform cannot be acquired at the sampling rate of the WT3000 (approximately 200 ks/S).
 - If the high frequency components of the pulse waveform attenuate due to the bandwidth limiting by the WT3000 measurement circuit and the waveform peak value is less than the peak over-range detection level.
- For the list of the range settings of all input elements, see section 3.16, “Displaying the Setup Parameter List.” You can change the measurement range with the list displayed.

Auto Range
When AUTO is pressed, the AUTO key illuminates and auto range is enabled. The range switches automatically depending on the magnitude of the input signal as described below. The different ranges used in the auto range are the same as those available for fixed range.
- Range Increase
 - When the voltage/current mode is RMS, the measurement range is increased if the data of measurement function Urms¹ or Irms¹ exceeds 110% of the current measurement range.
 - If the peak value of the input signal exceeds 330% or 660% of the current measurement range when the crest factor is set to 3 or 6, respectively, the range is increased.
 - If all the installed input elements are selected (all the element indicators are illuminated), the measurement range is increased on all input elements when the range increase condition above of any input element is met.
 - When a wiring unit is configured, the measurement range is increased on all input elements in the wiring unit when the range increase condition above of any input element in the wiring unit is met.
- Range Decrease
 - When the voltage/current mode is RMS, the range is decreased if the data of the measurement function Urms¹ or Irms¹ is less than or equal to 30% of the measurement range and Upk and Ipk is less than or equal to 300% or 600% of the next lower range when the crest factor is set to 3 or 6, respectively.
 *¹ When the voltage/current mode is MEAN, DC, or RMEAN, the measurement functions are Umn and Imn, UdC and IdC, or Urmn and Irmn, respectively.
 - If all the installed input elements are selected (all the element indicators are illuminated), the measurement range is decreased on all input elements when the range decrease condition above of all input elements is met.
 - When a wiring unit is configured, the measurement range is decreased on all input elements in the wiring unit when the range decrease condition above of all input elements in the wiring unit is met.

Note
When non-periodic pulse waveforms are applied during auto range, the range may not remain constant. If this happens, use the fixed range setting.
4.3 Setting the Measurement Range for Direct Input

- **Power Range**

 The measurement ranges (power ranges) of active power (P), apparent power (S), and reactive power (Q) are as follows:

<table>
<thead>
<tr>
<th>Wiring System</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1P2W (single-phase, two-wire)</td>
<td>voltage range × current range</td>
</tr>
<tr>
<td>1P3W (single-phase, three-wire)</td>
<td>voltage range × current range × 2</td>
</tr>
<tr>
<td>3P3W (three-phase, three-wire)</td>
<td>voltage range × current range × 2 (when the voltage and current ranges on the corresponding elements are set to the same range)</td>
</tr>
<tr>
<td>3P3W (3V3A, three-voltage, three-current)</td>
<td>voltage range × current range × 2 (when the voltage and current ranges on the corresponding elements are set to the same range)</td>
</tr>
<tr>
<td>3P4W (three-phase, four-wire)</td>
<td>voltage range × current range × 3</td>
</tr>
</tbody>
</table>

- When the result of the equation `voltage range × current range` exceeds 1000 W (VA or var), the displayed unit changes to kW (kVA or kvar).
- The display resolution is 600000.

Note

Because the voltage and current ranges switch independently according to range increase and decrease conditions in auto range mode, different power ranges may be set for the same power value.
4.3 Setting the Measurement Range for Direct Input

The combinations of the actual voltage and current ranges and the power range are listed below according to the table on the previous page (when the voltage or current range of each element is set to the same range). The table shows the active power range (unit: W). The same ranges are set for apparent power (unit: VA) and reactive power (unit: var). Just replace the unit with VA or var when looking at the tables.

- When the crest factor (see section 4.6) is set to 3

Active Power Range of Each Element

<table>
<thead>
<tr>
<th>Current Range [A]</th>
<th>Voltage Range (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0000</td>
<td>30.0000</td>
</tr>
<tr>
<td>5.0000m</td>
<td>75.000 mW</td>
</tr>
<tr>
<td>10.000m</td>
<td>150.000 mW</td>
</tr>
<tr>
<td>20.000m</td>
<td>300.000 mW</td>
</tr>
<tr>
<td>50.000m</td>
<td>750.000 W</td>
</tr>
<tr>
<td>100.000m</td>
<td>1.50000 W</td>
</tr>
<tr>
<td>200.000m</td>
<td>3.00000 W</td>
</tr>
<tr>
<td>500.000m</td>
<td>7.50000 W</td>
</tr>
<tr>
<td>1.00000</td>
<td>15.0000 W</td>
</tr>
<tr>
<td>2.00000</td>
<td>30.0000 W</td>
</tr>
<tr>
<td>5.00000</td>
<td>75.000 W</td>
</tr>
<tr>
<td>10.0000</td>
<td>150.000 W</td>
</tr>
<tr>
<td>20.0000</td>
<td>300.000 W</td>
</tr>
<tr>
<td>30.0000</td>
<td>450.000 W</td>
</tr>
</tbody>
</table>

Active Power Range of the Wiring Unit with 1P3W, 3P3W, or 3P3W (3V3A) Wiring System

<table>
<thead>
<tr>
<th>Current Range [A]</th>
<th>Voltage Range (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0000</td>
<td>30.0000</td>
</tr>
<tr>
<td>5.0000m</td>
<td>150.000 mW</td>
</tr>
<tr>
<td>10.000m</td>
<td>300.000 mW</td>
</tr>
<tr>
<td>20.000m</td>
<td>600.000 mW</td>
</tr>
<tr>
<td>50.000m</td>
<td>1.50000 W</td>
</tr>
<tr>
<td>100.000m</td>
<td>3.00000 W</td>
</tr>
<tr>
<td>200.000m</td>
<td>6.00000 W</td>
</tr>
<tr>
<td>500.000m</td>
<td>15.0000 W</td>
</tr>
<tr>
<td>1.00000</td>
<td>30.0000 W</td>
</tr>
<tr>
<td>2.00000</td>
<td>60.0000 W</td>
</tr>
<tr>
<td>5.00000</td>
<td>150.000 W</td>
</tr>
<tr>
<td>10.0000</td>
<td>300.000 W</td>
</tr>
<tr>
<td>20.0000</td>
<td>600.000 W</td>
</tr>
<tr>
<td>30.0000</td>
<td>900.000 W</td>
</tr>
</tbody>
</table>

Active Power Range of the Wiring Unit with 3P4W Wiring System

<table>
<thead>
<tr>
<th>Current Range [A]</th>
<th>Voltage Range (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0000</td>
<td>30.0000</td>
</tr>
<tr>
<td>5.0000m</td>
<td>225.000 mW</td>
</tr>
<tr>
<td>10.000m</td>
<td>450.000 mW</td>
</tr>
<tr>
<td>20.000m</td>
<td>900.000 mW</td>
</tr>
<tr>
<td>50.000m</td>
<td>2.25000 W</td>
</tr>
<tr>
<td>100.000m</td>
<td>4.50000 W</td>
</tr>
<tr>
<td>200.000m</td>
<td>9.00000 W</td>
</tr>
<tr>
<td>500.000m</td>
<td>22.5000 W</td>
</tr>
<tr>
<td>1.00000</td>
<td>45.0000 W</td>
</tr>
<tr>
<td>2.00000</td>
<td>90.0000 W</td>
</tr>
<tr>
<td>5.00000</td>
<td>225.000 W</td>
</tr>
<tr>
<td>10.0000</td>
<td>450.000 W</td>
</tr>
<tr>
<td>20.0000</td>
<td>900.000 W</td>
</tr>
<tr>
<td>30.0000</td>
<td>1350.000 W</td>
</tr>
</tbody>
</table>
4.3 Setting the Measurement Range for Direct Input

1

• When the crest factor is set to 6
Active Power Range of Each Element
Voltage Range (V)
7.5000

15.0000

30.0000

50.0000

75.000

150.000

300.000

500.000

2.50000m

18.7500 mW

37.5000 mW

75.000 mW

125.000 mW

187.500 mW

375.000 mW

0.75000 W

1.25000 W

5.00000m

37.5000 mW

75.000 mW

150.000 mW

250.000 mW

375.000 mW

0.75000 W

1.50000 W

2.50000 W

10.0000m

75.000 mW

150.000 mW

300.000 mW

500.000 mW

0.75000 W

1.50000 W

3.00000 W

5.00000 W

25.0000m

187.500 mW

375.000 mW

0.75000 W

1.25000 W

1.87500 W

3.75000 W

7.5000 W

12.5000 W

50.0000m

375.000 mW

0.75000 W

1.50000 W

2.50000 W

3.75000 W

7.5000 W

15.0000 W

25.0000 W

100.000m

0.75000 W

1.50000 W

3.00000 W

5.00000 W

7.5000 W

15.0000 W

30.0000 W

50.0000 W

250.000m

1.87500 W

3.75000 W

7.5000 W

12.5000 W

18.7500 W

37.5000 W

75.000 W

125.000 W

500.000m

3.75000 W

7.5000 W

15.0000 W

25.0000 W

37.5000 W

75.000 W

150.000 W

250.000 W

1.00000

7.5000 W

15.0000 W

30.0000 W

50.0000 W

75.000 W

150.000 W

300.000 W

500.000 W

2.50000

18.7500 W

37.5000 W

75.000 W

125.000 W

187.500 W

375.000 W

0.75000 kW

1.25000 kW

5.00000

37.5000 W

75.000 W

150.000 W

250.000 W

375.000 W

0.75000 kW

1.50000 kW

2.50000 kW

10.0000

75.000 W

150.000 W

300.000 W

500.000 W

0.75000 kW

1.50000 kW

3.00000 kW

5.00000 kW

15.0000

112.500 W

225.000 W

450.000 W

0.75000 kW

1.12500 kW

2.25000 kW

4.50000 kW

7.5000 kW

Active Power Range of the Wiring Unit with 1P3W, 3P3W, or 3P3W (3V3A) Wiring System
Voltage Range (V)

Current
Range
[A]

7.5000

15.0000

30.0000

50.0000

75.000

150.000

300.000

500.000

2.50000m

37.5000 mW

75.0000 mW

150.000 mW

250.000 mW

375.000 mW

750.000 mW

1.50000 W

2.50000 W

5.00000m

75.0000 mW

150.000 mW

300.000 mW

500.000 mW

750.000 mW

1.50000 W

3.00000 W

5.00000 W

10.0000m

150.000 mW

300.000 mW

600.000 mW 1000.000 mW

1.50000 W

3.00000 W

6.00000 W

10.00000 W

25.0000m

375.000 mW

750.000 mW

1.50000 W

2.50000 W

3.75000 W

7.50000 W

15.0000 W

25.0000 W

50.0000m

750.000 mW

1.50000 W

3.00000 W

5.00000 W

7.50000 W

15.0000 W

30.0000 W

50.0000 W

100.000m

1.50000 W

3.00000 W

6.00000 W

10.00000 W

15.0000 W

30.0000 W

60.0000 W

100.0000 W

250.000m

3.75000 W

7.50000 W

15.0000 W

25.0000 W

37.5000 W

75.0000 W

150.000 W

250.000 W

500.000m

7.50000 W

15.0000 W

30.0000 W

50.0000 W

75.0000 W

150.000 W

300.000 W

500.000 W

1.00000

15.0000 W

30.0000 W

60.0000 W

100.0000 W

150.000 W

300.000 W

600.000 W

1000.000 W

2.50000

37.5000 W

75.0000 W

150.000 W

250.000 W

375.000 W

750.000 W

1.50000 kW

2.50000 kW

5.00000

75.0000 W

150.000 W

300.000 W

500.000 W

750.000 W

1.50000 kW

3.00000 kW

5.00000 kW

10.0000

150.000 W

300.000 W

600.000 W

1000.000 W

1.50000 kW

3.00000 kW

6.00000 kW

10.00000 kW

15.0000

225.000 W

450.000 W

900.000 W

1.50000 kW

2.25000 kW

4.50000 kW

9.00000 kW

15.0000 kW

150.000

300.000

500.000

2.25000 W

3.75000 W

2
3
4
Measurement Conditions

Current
Range
[A]

5
6
7
8
9

Active Power Range of the Wiring Unit with 3P4W Wiring System
Current
Range
[A]
2.50000m

Voltage Range (V)
7.5000

15.0000

30.0000

50.0000

75.000

562.500 mW 1125.000 mW

56.2500 mW 112.5000 mW

225.000 mW

375.000 mW

5.00000m

112.5000 mW

225.000 mW

450.000 mW

750.000 mW 1125.000 mW

2.25000 W

4.50000 W

7.50000 W

10.0000m

225.000 mW

450.000 mW

900.000 mW 1500.000 mW

2.25000 W

4.50000 W

9.00000 W

15.00000 W

25.0000m

562.500 mW 1125.000 mW

2.25000 W

3.75000 W

5.62500 W

11.25000 W

22.5000 W

37.5000 W

50.0000m

1125.000 mW

2.25000 W

4.50000 W

7.50000 W

11.25000 W

22.5000 W

45.0000 W

75.0000 W

100.000m

2.25000 W

4.50000 W

9.00000 W

15.00000 W

22.5000 W

45.0000 W

90.0000 W

150.0000 W

250.000m

5.62500 W

11.25000 W

22.5000 W

37.5000 W

56.2500 W

112.5000 W

225.000 W

375.000 W

500.000m

11.25000 W

22.5000 W

45.0000 W

75.0000 W

112.5000 W

225.000 W

450.000 W

750.000 W

1.00000

22.5000 W

45.0000 W

90.0000 W

150.0000 W

225.000 W

450.000 W

900.000 W

1500.000 W

2.50000

56.2500 W

112.5000 W

225.000 W

375.000 W

562.500 W

1125.000 W

2.25000 kW

3.75000 kW

5.00000

112.5000 W

225.000 W

450.000 W

750.000 W

1125.000 W

2.25000 kW

4.50000 kW

7.50000 kW

10.0000

225.000 W

450.000 W

900.000 W

1500.000 W

2.25000 kW

4.50000 kW

9.00000 kW 15.00000 kW

15.0000

337.500 W

675.000 W

1350.000 W

2.25000 kW

3.37500 kW

6.75000 kW 13.50000 kW

10
11
12
App

22.5000 kW

Index

IM 760301-01E

4-11


4.4 Setting the Measurement Range When Using the External Current Sensor

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

• Selecting the Target Element
 1. Press ELEMENT to select the target element. The corresponding element indicator above of the key illuminates. To select all elements, press SHIFT+ELEMENT (ALL).

• Selecting the External Current Sensor Input Connector
 2. Press EXT SENSOR to turn ON the EXT SENSOR key. If it is already illuminated, proceed to step 3.

• Setting the External Current Sensor Range
 3. Press the current range selection key (UP and DOWN keys) to set the external current sensor range. The specified range is displayed with the current range indicator to the left of the keys and on the upper-right corner of the screen where the elements are displayed.
 • Press the current range UP key to increase the external current sensor range.
 • Press the current range DOWN key to decrease the external current sensor range.
 • Press AUTO to specify auto range. The AUTO key illuminates.
 4. Repeat steps 1 and 3 to set the external current sensor range of all elements.
4.4 Setting the Measurement Range When Using the External Current Sensor

- Setting the External Current Sensor Transformation Ratio
 1. Press \texttt{SHIFT+EXT SENSOR (SENSOR RATIO)} to display the Sensor Ratio menu.
 Only the installed elements are displayed.

- Selecting the Target Element
 2. Press one of the soft keys corresponding to the displayed element to select the target element.

- Setting the External Current Sensor Transformation Ratio
 3. Press the cursor keys to set the transformation ratio.
4.4 Setting the Measurement Range When Using the External Current Sensor

Explanation

The output of current sensors that output voltage, such as shunts and clamps, can be input to the current sensor input connector of an element and measured. When using a current sensor that outputs current, set the transformation ratio as a CT ratio (see section 4.5).

- **Display Position of the Target Element and Specified Range**
 It is the same as section 4.3, “Setting the Measurement Range during Direct Input.”

- **Selecting the External Current Sensor Input Connector**
 To measure the current using the input signal from the external current sensor input connector, EXT SENSOR must be selected (EXT SENSOR key illuminated) by pressing EXT SENSOR, and then the external current sensor range must be specified.

- **Selecting the External Current Sensor Range**
 Two types of range settings are available: fixed and auto.

 - **Fixed Range**
 - When the crest factor is set to 3
 Select 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, or 10 V.
 - When the crest factor is set to 6
 Select 25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, or 5 V.

 - **Auto Range**
 When AUTO is pressed, the AUTO key illuminates and auto range is enabled. The range changes automatically depending on the amplitude of the input signal. The switching conditions and precautions are the same as the descriptions given in section 4.3, “Setting the Measurement Range during Direct Input.” The different ranges used in the auto mode are the same as those available for fixed range.

- **Setting the External Current Sensor Transformation Ratio**
 The transformation ratio can be set in the range of 0.0001 to 99999.9999.

- **Configuration Example of the External Current Sensor Range and Transformation Ratio**
 When measuring a current with a maximum value of 100 A using a current sensor that outputs 10 mV when 1 A of current is flowing, the maximum voltage that the current sensor outputs is $10 \text{ mV} / \text{A} \times 100 \text{ A} = 1 \text{ V}$. Therefore, set 1 V for the external current sensor range and 10 mV/A for the external current sensor transformation ratio.

Note

- When attempting to directly read the current of the circuit under measurement by multiplying the output of the external current sensor by the transformation ratio, turn OFF the external VT/CT scaling function (see section 4.5). If it is turned ON, the value will be multiplied by the CT ratio.
- When measuring a signal other than a sine wave such as a distorted wave, accurate measurements can be obtained by selecting the minimum measurement range that does not meet the conditions below.
 - The input peak over-range indicator at the top center of the screen illuminates or blinks.
 - The measured values of the voltage and current indicate over range [-OL-].
- For the list of the ranges and transformation ratios of all input elements, see section 3.17, “Displaying the Setup Parameter List.” You can change the measurement range and the external current sensor transformation ratio with the list displayed. However, for input elements whose current measurement range is not set to external current sensor input range, the change in the transformation ratio is not applied to the list display.
4.5 Setting the Scaling Function When Using VT/CT

Procedure

1. Press **SCALING** to display the Scaling menu.

- **Turning ON/OFF the Scaling Function**
 2. Press the **Scaling** soft key to select ON or OFF. The SCALING key illuminates when ON is selected.

- **Setting the VT Ratio**
 3. Press the **Scaling Item** soft key to select VT.

- **Selecting the Target Element**
 4. Press one of the soft keys corresponding to the displayed element to select the target element.
 5. Press the **cursor keys** to set the VT ratio.
 6. Repeat steps 4 and 5 to set the VT ratio for all elements.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the **cursor keys**” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
• Setting the CT Ratio
 3. Press the **Scaling Item** soft key to select CT.

• Selecting the Target Element
 4. Press one of the soft keys corresponding to the displayed element to select the target element.
 5. Press the **cursor keys** to set the CT ratio.
 6. Repeat steps 4 and 5 to set the CT ratio for all elements.

• Setting the Power Coefficient
 3. Press the **Scaling Item** soft key to select SF (Scaling Factor).

• Selecting the Target Element
 4. Press one of the soft keys corresponding to the displayed element to select the target element.
 5. Press the **cursor keys** to set the power coefficient.
 6. Repeat steps 4 and 5 to set the SF ratio for all elements.
4.5 Setting the Scaling Function When Using VT/CT

Explanation

Set the VT ratio when applying the output from the secondary side to the voltage input terminal. Then, set the voltage range according to the maximum value of the VT output (see section 4.3). In addition, set the CT ratio (or the transformation ratio of the current sensor that outputs current) when applying the secondary output of the CT or clamp-type current sensor that outputs current to the current input terminal. Then, set the current range according to the maximum value of the current sensor output. For details, see section 2.3.

• **Turning ON/OFF the Scaling Function**

 You can select whether to multiply the applicable measurement function by the VT ratio, CT ratio, or power coefficient. When reading the measured value directly using VT or CT (or current sensor), select ON. The SCALING key illuminates when ON is selected.

 Applicable measurement function: Voltage U, current I, power (P, S, and Q), maximum and minimum voltages (U+pk and U-pk), and maximum and minimum currents (I+pk and I-pk)

 • ON: The measurement functions above are multiplied by the VT ratio, CT ratio, and power factor.
 • OFF: The measurement functions above are not multiplied by the VT ratio, CT ratio, and power factor. The output values of the VT and CT are displayed directly as numeric data.

• **Setting the VT Ratio (VT)**

 The VT ratio can be set in the range of 0.0001 to 99999.9999.

• **Setting the CT Ratio (CT)**

 The CT ratio can be set in the range of 0.0001 to 99999.9999.

• **Setting the Power Factor (SF (Scaling Factor))**

 The power coefficient (SF) can be set in the range of 0.0001 to 99999.9999.

Note

• If the result of multiplying the VT ratio, CT ratio, or power coefficient (scaling factor) to the measured value exceeds 99999.99M, the display frame of the numeric data will display [-OF-].
• For the list of the VT, CT, and power factor of all input elements, see section 3.17, “Displaying the Setup Parameter List.” When the scaling function is OFF, VT, CT, and power factor are displayed as 1.0000 in the list.
• To correctly compute the power and efficiency of Σ functions, set the power factors of all elements so that all power units used in the computation are the same. For example, the efficiency over elements or wiring units with mixed power units of W (watt) and J (joule) cannot be computed correctly. Unify the power unit to W or J.
4.6 Selecting the Crest Factor

Procedure

1. Press MISC to display the Misc menu.
2. Press the Config soft key to display the Config menu.

• **Selecting the Crest Factor**

3. Press Crest Factor to select CF3 or CF6.

Explanation

For details, see section 2.3.

• **Selecting the Crest Factor**

The crest factor is a ratio of the amplitude with respect to the rms value. You can select CF3 or CF6.

Note

• If the crest factor is selected, the voltage range and current range are set to the maximum range on all elements.
• If the crest factor is set to 6, the measurement conditions of crest factor 5 and higher required by IEC62018 are met.
• When measuring waveforms whose crest factor is less than or equal to 3, accurate measurements can be achieved by setting the crest factor to 3.
4.7 Setting the Measurement Period

Procedure

1. Press **SYNC SOURCE** to display the Sync Src menu.

 - **Selecting the Target Element**
 2. Press **ELEMENT** to select the target element. The selected element is displayed in the upper right corner of the screen (if you selected element 1, Sync Src1 are displayed). To select all elements, press **SHIFT+ELEMENT (ALL)**.

 - **Setting the Synchronization Source**
 3. Press the **Item Up Exec** or **Item Down Exec** soft key to set the synchronization source. The specified synchronization source is displayed by the element displayed in the upper right corner of the screen.

 To exit the menu during operation, press **ESC** located above the soft keys.

 In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
4.7 Setting the Measurement Period

Explanation

The measurement period is determined by the data update rate and the synchronization source specified by carrying out the procedure in this section. For details, see appendix 6. During normal measurement, the numeric data is measured/computed from the data sampled within the measurement period.

- **Display Position of the Target Element and Synchronization Source**
 The target element and the synchronization source are displayed in the upper right corner of the screen when **SYNC SOURCE** is pressed.

<table>
<thead>
<tr>
<th>Target element (displayed as 1-4 when all elements are selected collectively)</th>
<th>Synchronization source (example in which the current of Element 1 is specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Src1 : 11</td>
<td>YOKOGAWA ♦</td>
</tr>
</tbody>
</table>

- **Selecting the Target Element to Be Specified**
 Only the indicators of installed elements illuminate sequentially. When the independent setting of input elements is OFF, the element switches according to the wiring system. All elements can also be selected collectively.

- **Setting the Synchronization Source**
 You can select which input signal will be the synchronization source (the zero-crossing point of the input signal to which the measurement period is synchronized) for each element or all elements collectively. Select the signal to be the synchronization source from the choices below. The selectable items vary depending on the installed elements. U1, I1, U2, I2, U3, I3, U4, I4, Ext Clk (external clock), and None

Note

If you specify no synchronization source by selecting “None,” the entire sampled data within the data update interval is the data used to determine the numeric data. When measuring DC signals, this method can be used to prevent errors in the detection of the measurement period caused by noise.

- **When Setting the Synchronization Source to Ext Clk**
 Apply a clock signal to the external clock input connector (EXT CLK) on the rear panel according to the following specifications.

- **Ext Clk Specifications**

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
</tr>
<tr>
<td>Input level</td>
<td>TTL</td>
</tr>
<tr>
<td>Input waveform</td>
<td>50% duty ratio rectangular wave</td>
</tr>
</tbody>
</table>

CAUTION

Applying a voltage outside the range of 0 to 5 V to the external clock input connector (EXT CLK) can damage the instrument.
4.7 Setting the Measurement Period

- **Measurement Period**
 - When the data update rate is 50 ms, 100 ms, 5 s, 10 s, or 20 s
 You must set the measurement period. The measurement period is set between the first point where the synchronization source crosses the level zero point (center of the amplitude) on the rising slope (or falling slope) within the data update period and the last point where the synchronization source crosses the level zero point (center of the amplitude) on the rising slope (or falling slope) within the update period. If there is one or no zero crossing in the data update interval, the measurement period is set equal to the data update interval. For details, see appendix 6.

 ![Diagram of measurement period](image)

 - Rising edge zero crossing
 - Falling edge zero crossing

 - When the data update rate is 250 ms, 500 ms, 1 s, or 2 s
 You do not have to set the measurement period. The measurement period is equal to the data update interval.

Note

- The measurement period for the numeric data of the maximum value (Peak) for voltage and current is the entire span within the data update period regardless of the settings above. Therefore, the measurement period for the measurement functions U+pk, U-pk, I+pk, I-pk, CfU, CfI, FfU, and FfI that are determined from the maximum value of the voltage and current is also the entire span within the data update period.
- The measured value may fluctuate or may not be correct if the synchronization source is not set correctly. Refer to appendix 6 when setting the synchronization source.
- For the list of measurement period (synchronization source) settings of all input elements, see section 3.17, “Displaying the Setup Parameter List.” You can change the measurement period (synchronization source) with the list displayed.
4.8 Selecting the Input Filter

Procedure

- **Selecting the Line Filter**
 1. Press LINE FILTER to display the LINE FILTER menu. Only the installed elements are displayed.

- **Selecting the Target Element**
 2. Press one of the soft keys corresponding to the displayed element to select the target element.

- **Selecting the Line Filter**
 3. Press the cursor keys to select a value between OFF and 50 kHz. If any of the target elements is set to a setting other than OFF, LINE FILTER illuminates.

- **Selecting the Frequency Filter**
 4. Press SHIFT+LINE FILTER (FREQ FILTER) to display the Freq Filter menu. Only the installed elements are displayed.
 5. Press the soft key corresponding to the target element to select ON or OFF.

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
4.8 Selecting the Input Filter

There are two types of input filters, line filter and frequency filter.

- **Selecting the Line Filter**
 Because the line filter is inserted into the voltage and current measurement input circuit, it directly affects the voltage, current, and power measurements (see the block diagram in section 2.1). When the line filter is turned ON, the measured value does not contain high frequency components. Therefore, measurement of voltage, current, and power is possible by eliminating high frequency components from inverter waveforms, strain waveforms, etc.
 - The cutoff frequency can be selected from the list of choices below.
 - OFF, 500 Hz, 5.5 kHz, and 50 kHz
 - If any of the target elements is set to a setting other than OFF, the LINE FILTER key illuminates.
 - Selecting OFF disables the line filter.

- **Line Filter and Measurement Mode**
 - The line filter setting is common to all measurement modes except cycle-by-cycle measurement mode. The initial setting is OFF.
 - The line filter setting in cycle-by-cycle measurement mode is independent of the setting in other measurement modes. The initial setting is 50 kHz.

- **Selecting the Frequency Filter**
 Because the frequency filter is inserted into the frequency measurement input circuit, it affects frequency measurements. In addition, if the display update interval of the WT3000 is set to 50 ms, 100 ms, 5 s, 10 s, or 20 s, it affects the detection of the measurement period for voltage, current, and power measurements (see appendix 6 and 7). In this case, the filter also acts as a filter for detecting the zero-crossing of the synchronization source signal (see section 2.2) more accurately. The frequency filter is not inserted into the voltage and current measurement input circuit. Therefore, the measured values include high frequency components even when the frequency filter is turned ON.
 - The WT3000 detects the zero crossing point with a hysteresis of approximately 5% of the measurement range.
 - If the line filter described above is ON, the line filter affects the frequency measurement even when the frequency filter is OFF.
 - It is recommended that the frequency filter be turned ON when the input signal frequency is less than or equal to 440 Hz.

Note
For details on selecting the line filter for the motor evaluation function, see the Expansion Function User’s Manual IM760301-51E.
4.9 Selecting the Averaging Function

Procedure

1. Press **AVG** to display the Avg menu.

 Turning ON/OFF the Averaging Function

2. Press the **Averaging** soft key to select ON or OFF.

 Selecting the Averaging Type

3. Press the **Avg Type** soft key to select Exp or Lin.

 Setting the Attenuation Constant or Average Count

4. Press the **cursor keys** to set the attenuation constant or the average count.
 - If the averaging type is Exp (exponential averaging), set the attenuation constant. If the averaging type is Lin (moving averaging), set the average count.
4.9 Selecting the Averaging Function

Explanation
For functional details, see section 2.3.
The averaging function is effective when reading of the numeric display is difficult due to
fluctuations. This occurs when the fluctuation of the power supply or the load is large or
when the input signal frequency is low.

Measurement Functions of Normal Measurement
• Turning ON/OFF Averaging
 You can select whether to perform the specified averaging operation.
 • ON: Performs averaging.
 • OFF: Does not perform averaging.

• Selecting the Averaging Type
 Select one of the choices below. For the equation of each type, see section 2.3.
 • Exp: Performs exponential averaging.
 • Lin: Performs moving averaging.

• Setting the Attenuation Constant or Average Count
 If the averaging type is Exp (exponential averaging), set the attenuation constant. If
 the averaging type is Lin (moving averaging), set the average count.
 • For Exp: Select the attenuation constant from 2, 4, 8, 16, 32, and 64.
 • For Lin: Select the average count from 8, 16, 32, 64, 128, and 256.

• Measurement Functions That Are Averaged
 The measurement functions that are directly averaged are indicated below. Other
 functions that use these functions in their computation are also affected by the
 averaging. For details regarding the determination of each measurement function, see
 appendix 1.
 • U, I, P, S, and Q
 • ΔF1 to 4 (models with the delta computation function)
 • Torque, speed, and Pm (models with the delta computation function)
 • λ, φ, Cfu, CfI, Pc, q, q+, q−, WS, WQ, η1 to η4 are computed from the averaged P
 and Q.
 • Slip is computed from the averaged speed.

Measurement Functions of Harmonic Measurement (Option)
• Turning ON/OFF Averaging
 • Harmonic Measurement in Normal Measurement Mode
 • If averaging is turned ON and the averaging type is Exp (exponential averaging),
 averaging is performed on the measurement functions of harmonic
 measurement (option).
 • If averaging is turned ON but the averaging type is Lin (moving averaging),
 averaging is not performed on the measurement functions of harmonic
 measurement (option).

 • Wide Bandwidth Harmonic Measurement Mode
 When averaging is turned ON, exponential averaging is performed on the
 measurement functions of harmonic measurement.

 • IEC Harmonic Measurement Mode
 When averaging is turned ON, exponential averaging is performed on the
 measurement functions of harmonic measurement.
4.9 Selecting the Averaging Function

- Setting the Attenuation Constant
 - Harmonic Measurement in Normal Measurement Mode
 If averaging is turned ON and the averaging type is Exp (exponential averaging),
 exponential averaging is performed using the selected attenuation constant (2, 4, 8, 16, 32, or 64).
 - Wide Bandwidth Harmonic Measurement Mode
 When averaging is turned ON, exponential averaging is performed using the
 attenuation constant that you select from 2, 4, 8, 16, 32, and 64.
 - IEC Harmonic Measurement Mode
 You cannot select the attenuation constant. Averaging is performed using the
 attenuation constant that is defined by the standard.

- Measurement Functions That Are Averaged
 The measurement functions that are directly averaged are indicated below. Other
 functions that use these functions in their computation are also affected by the
 averaging. For details regarding the determination of each measurement function, see
 appendix 1.
 - U(k), I(k), P(k), S(k), and Q(k)
 - \(\lambda(k) \) and \(\phi(k) \) are computed from the averaged P(k) and Q(k).
 - Z, Rs, Xs, Rp, Xp, Uhdf, Ihdf, Phdf, Uthd, Ithd, Pthd, Uthf, Ithf, Utif, Itif, hvf, and hcf
 - k: harmonic order

Note
- When averaging is turned ON, the average value of multiple measurements is determined
 and displayed. Therefore, if the input signal changes steeply, the response for the measured
 value to follow up on the change is slow.
- The larger the value of the attenuation constant of exponential averaging or the average
 count of moving average, the more stable the measured value (response to the input change
 is slow).
- The following measurement functions are not affected by averaging.
 - Measurement functions of normal measurement
 (models with the motor evaluation function)
 - Measurement functions of harmonic measurement (option)
 \(\phi(U(k), \phi(I(k), \phi(U-Ij), \phi(U-Ik), \phi(U-Ii), \phi(U-Ij), \phi(U-Ik) \)
 * k: harmonic order

Measurement Functions of Voltage Fluctuation and Flicker Measurement Mode and Cycle-by-Cycle Measurement Mode
Averaging is not performed. The average setting is invalid.
4.10 Selecting the Data Update Rate

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press UPDATE RATE to display the Update Rate menu.
2. Press the Update Rate Up Exec or Update Rate Down Exec soft key to change the data update rate. The specified data update rate is displayed in the upper right corner of the screen.
 - Pressing the Update Rate Up Exec soft key increases data update rate.
 - Pressing the Update Rate Down Exec soft key decreases data update rate.
For details, see section 2.3.
Excluding the cases when the screen is set to the displays listed below, the selected interval is used to pass the numeric data to the D/A output and communication output as well as storing the numeric data (to the internal memory).

- Waveform display
- Split display including a waveform display

- **Display Position of the Data Update Rate**
 The data update rate is displayed in the upper right corner of the screen when the UPDATE RATE key is pressed.

<table>
<thead>
<tr>
<th>Data update rate</th>
<th>Computing method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update: 500 msec</td>
<td>YOKOGAWA ♦</td>
</tr>
</tbody>
</table>

Element1
- \(u_1 \): 1000Vrms
- \(i_1 \): 30A rms

Element2
- \(u_2 \): 1000V rms

- **Limitation on the Data Update Rate by Measurement Modes**
 - **Normal Measurement Mode, Waveform Computation Mode, and FFT Mode**
 Select from the choices below. The numeric data is updated at the selected interval. To capture relatively fast load fluctuations in the power system, select a fast data update rate. To capture relatively low frequency signals, select a slow data update rate.
 - 50 ms, 100 ms, 250 ms, 500 ms, 1 s, 2 s, 5 s, 10 s, and 20 s

 - **Wide Bandwidth Harmonic Measurement Mode and IEC Harmonic Measurement Mode**
 The data update rate setting is invalid. The data update rate is determined automatically by the fundamental frequency of the PLL source and the number of periods of the PLL source used for the analysis.

 - **Voltage Fluctuation and Flicker Measurement Mode**
 The data update rate is fixed to 2 s.

 - **Cycle-by-Cycle Measurement Mode**
 The data update rate setting is invalid. The data update rate is automatically determined by the fundamental frequency and the number of measurement cycles of the synchronization source.

Note

- In some cases, the display update rate of the numeric data and waveform data that are displayed on the screen may take longer than the data update rate.
- The lower frequency limit of the AC signal that can be measured varies depending on the data update rate. The measured value may not be stable if an AC signal of a frequency lower than the lower limit of measurement frequency (see section 12.4) is measured.
- The WT3000 automatically switches the method of computing the measured values according to the data update rate. For details, see appendix 7.
- The data update rate of the FFT is determined automatically from the number of FFT points. For details, see chapter 11 in the *Extension Function User’s Manual IM760301-51E*.
- The display update interval in waveform computation mode and FFT mode is the data update rate + computation time.
4.11 Hold and Single Measurement

Procedure

- **Holding the Numeric Data Display**
 1. Press **HOLD**. The HOLD key illuminates, and the numeric data display is held.

- **Performing a Single Measurement**
 2. Press **SINGLE**. The measurement is performed once and the instrument enters the hold condition.

- **Releasing the Hold Operation**
 3. Press **HOLD** while the values are held. The HOLD key turns OFF, and the numeric data display is updated.

Explanation

- **Hold**
 This function aborts the measurement and display operations that are performed at the data update rate and holds the data display of various functions. The D/A output, the numeric data list that the built-in printer prints, the communication output, and other values are set to the held numeric data.

- **Single Measurement**
 While in the hold condition, the measurement is performed once at the specified data update rate and enters the hold condition. If you press the SINGLE key when not in hold condition, measurement is restarted from that point.

Note

For details on the hold function during integration, see section 5.14.
5.1 Displaying Numeric Data and Changing the Displayed Items

Procedure

- **Displaying Numeric Data on the Entire Screen**
 1. Press NUMERIC to display numeric data.

- **Displaying Numeric Data by Dividing the Display into Halves (Split Display)**
 1. Press OTHERS to display the Others menu.
 2. Press any of the soft keys from **Numeric+wave**, **Numeric+Bar**\(^{1}\), **Numeric+Trend**, **Numeric+Math**\(^{2}\), and **Numeric+FFT**\(^{2}\) to select the display mode.

\(^{1}\) Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

\(^{2}\) Displayed only to products with the advanced computation (/G6) option.

If wide bandwidth harmonic measurement mode is enabled on models with the advanced computation (/G6) option, switch to normal measurement mode. For the procedure, see section 3.16.
The following procedures are given as typical examples in which the display mode is set to Numeric (numeric data on the entire screen).

- **Selecting the Number of Displayed Items**
 2. Press FORM to display the Numeric Form menu.
 3. Press any of the soft keys from 4 Items, 8 Items, 16 Items, All Items, Single List*, and Dual List* to select the number of displayed items.

* Only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

There are three methods to select the item to change, measurement function, and element/wiring unit.
- Select using the function select keys.
- Select using the user-defined function select key (USER key).
- Select from the menu.
5.1 Displaying Numeric Data and Changing the Displayed Items

- **Changing Using the Function Select Keys**
 The display of measurement functions of U, I, P, S, Q, λ, φ, WP, q, TIME, FU, FI, and η and the element/wiring unit can be changed using function select keys.

- **Selecting the Item to Be Changed**
 4. Press ESC to clear the Numeric Form menu.
 5. Press the cursor keys to select the item to be changed. The item to be changed is highlighted.

- **Changing the Measurement Function**
 6. Press the U/I/P, S/Q/λ/φ, WP/q/Time, or FU/FI/η function select key to select the displayed measurement function.
 Press the key corresponding to the measurement function you wish to display.
 The display switches each time the key is pressed as follows: U -> I -> P -> original display.

- **Changing the Element/Wiring Unit**
 7. Press ELEMENT to select the element/wiring unit.

- **Changing the Element/Wiring Unit Collectively**
 8. Press SHIFT+ELEMENT (ALL). ALL LED illuminates, and the element/wiring unit of all the displayed items on the displayed page can be changed collectively. This completes the procedure for changing the displayed items using the function select keys.

- **Changing Using the Function Select Key (USER Key)**
 By assigning measurement functions to the USER key, up to four measurement functions can be directly displayed.

- **Assigning Measurement Functions to the USER Key**
 9. Press SHIFT+USER (USER SET) to display the User Reserved menu.
 10. Press any of the soft keys from Function 1 to 4 to select the desired Function.
 The measurement function selection box appears.
 11. Press the cursor keys to select any of the measurement functions starting with None.
 12. Press SET. The symbol for the selected measurement function is displayed at the highlighted position.

- **Changing the Measurement Function with the USER Key**
 13. Press USER to select the measurement function in the same fashion as step 6.
5.1 Displaying Numeric Data and Changing the Displayed Items

- **Selecting from the Menu**
 4. Press ITEM to display the Numeric menu.

- **Selecting the Item to Be Changed**
 5. Press the Item No. soft key.
 6. Press the cursor keys to select the item to be changed. The item to be changed is highlighted.

- **Changing the Measurement Function**
 7. Press the Function soft key to display the measurement function selection box.
 8. Press the cursor keys to select any of the measurement functions starting with None.
 9. Press SET. The symbol for the selected measurement function and the numeric data are displayed at the highlighted position.

- **Changing the Element/Wiring Unit**
 10. Press the Element/Σ Σ Σ Σ soft key to display the element/wiring unit selection box.
 11. Press the cursor keys to select any of the elements/wiring units starting with Element1.
 12. Press SET. The symbol for the selected element number or wiring unit and the numeric data are displayed at the highlighted position. This completes the procedure for changing the displayed items using the menu.

* For details on changing the harmonic order of the measurement functions of harmonic measurement, see the Expansion Function User’s Manual IM760301-51E.

- **Page Scrolling the Display**
 15. Press PAGE ▼ or PAGE ▲ to scroll the page.
 - Press PAGE ▼ to display the next page.
 - Press PAGE ▲ to display the previous page.

- **Jumping to the Last or First Page**
 16. Press SHIFT+PAGE ▼ (▼) or SHIFT+PAGE ▲ (▲) to jump the page.
 - Press SHIFT+▼ (▼) to display the last page.
 - Press SHIFT+▲ (▲) to display the first page.
5.1 Displaying Numeric Data and Changing the Displayed Items

- Resetting the Order of the Displayed Items
 1. Press ITEM to display the Numeric menu.
 2. Press the Reset Items Exec soft key. An Alert dialog box appears.
 3. Press the cursor keys to select OK or Cancel.
 4. Select OK and press SET to reset the order of the displayed items on all pages.
 If you select Cancel and press SET the order of the displayed items are not reset.

Explanation

A display example is shown below.

- The color changes from green to red when the input signal level exceeds approx. three or six times the specified measurement range when the crest factor is set to 3 or 6, respectively. The first and second lines correspond to voltage and current, respectively. The conditions of the input signals of elements 1 to 4 are displayed in order from the left.
- Displayed only on models with the motor evaluation function (motor version). The color changes from green to red when the analog revolution/torque signal level exceeds approx. 150% of the specified measurement range. For pulse revolution signal, the color changes from green to red when approx. ±5 V is exceeded. The first and second lines correspond to the conditions of rotating speed and torque, respectively.

Data update count
- The data update count is displayed under Update in the lower left corner of the screen.
- Press HOLD to hold the data update count. Press HOLD again to release.
- When the value exceeds 65535, it returns to 0.
- The data update count is reset to 0 if the power is turned OFF or a setting such as the measurement range or filter is changed.
5.1 Displaying Numeric Data and Changing the Displayed Items

Measurement Functions of Normal Measurement

- Symbol and Meaning of the Displayed Measurement Functions

<table>
<thead>
<tr>
<th>Symbol and Meaning</th>
<th>Displayed Measurement Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>U (voltage Urms, Urnn, Udc, Urmn)</td>
<td>I (current Irms, Imn, Idc, Irmn)</td>
</tr>
<tr>
<td>P (active power)</td>
<td>S (apparent power)</td>
</tr>
<tr>
<td>Q (reactive power)</td>
<td>λ (power factor)</td>
</tr>
<tr>
<td>q (phase difference)</td>
<td>fU/fI (or freqU/freqI voltage/current frequency)</td>
</tr>
<tr>
<td>U+pk/U-pk (voltage maximum/minimum)</td>
<td>I+pk/I-pk (current maximum/minimum)</td>
</tr>
<tr>
<td>CTU/CII (voltage/current crest factor)</td>
<td>Pc (corrected power)</td>
</tr>
<tr>
<td>WP (watt hour, sum of positive and negative watt hours)</td>
<td>WP+ (positive watt hour consumed)</td>
</tr>
<tr>
<td>q+ (positive current hour consumed)</td>
<td>q- (negative current hour returned to the power supply)</td>
</tr>
<tr>
<td>WS (volt-ampere-hour)</td>
<td>WQ (var-hour)</td>
</tr>
<tr>
<td>Time (integration time)</td>
<td>η1 to η4 (efficiency)</td>
</tr>
<tr>
<td>F1 to F20 (user-defined functions)</td>
<td>Δf1 to f4 (delta computation: option)</td>
</tr>
<tr>
<td>Pm* (motor output, mechanical power)</td>
<td>"Torque*</td>
</tr>
<tr>
<td>Slip,*</td>
<td>SyncSp* (synchronous speed)</td>
</tr>
</tbody>
</table>

and the measurement functions of harmonic measurement (for details, see chapter 7 in the Expansion Function User’s Manual IM760301-51E)

* Displayed on models with the motor version.

Example The True Rms Value of the Voltage of Element 1

Urms1

Simple Average of the Current of the Elements Combined by Wiring Unit ΣA

IdcΣA

Selecting the Display Mode

Select the display format of the numeric data from below. [--------] (no data) is displayed in places where the measurement function is not selected or where no numeric data is present.

Displaying the Numeric Data on the Entire Screen

Press the NUMERIC key to display the numeric data on the entire screen.

Displaying Numeric Data by Dividing the Display into Halves (Split Display)

- Numeric+Wave
 The numeric data and waveform are displayed separately in the top and bottom windows. For details on setting the waveform display, see section 4.2 and chapter 9.

- Numeric+Trend
 The numeric data and trend are displayed separately in the top and bottom windows. For details on setting the trend display, see section 4.5 and chapter 10.

- Numeric+Bar
 This mode is selectable only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.
 The numeric data and bar graph of harmonics are displayed separately in the top and bottom windows. For details on how to set the bar graph display, see the Expansion Function User’s Manual IM760301-51E.
5.1 Displaying Numeric Data and Changing the Displayed Items

• Selecting the Number of Displayed Items
Select the number of numeric data items that are displayed simultaneously from the choices below.

• 4 Items
 • When the display mode is Numeric, Numeric + Wave, Numeric + Bar*1, and Numeric + Trend, four numeric data values are displayed in one column.

• 8 Items
 • When the display mode is Numeric, eight numeric data values are displayed in one column.
 • When the display mode is Numeric + Wave, Numeric + Bar*1, and Numeric + Trend, eight numeric data values are displayed in two columns.

• 16 Items
 • When the display mode is Numeric, Numeric + Wave, Numeric + Bar*1, 16 numeric data values are displayed in two columns.

• All Items
 A table is displayed indicating the numeric data of items with measurement functions listed vertically and symbols indicating elements and wiring units listed horizontally. The number of displayed items varies depending on the number of installed elements. The displayed item cannot be changed independently using the ITEM key. Switch the display by page scrolling.

• Single List*1
 • When the display mode is Numeric, 42 numeric data values for a single measurement function are displayed in two columns.
 • When the display mode is Numeric + Wave, Numeric + Bar*1, 22 numeric data values for a single measurement function are displayed in two columns.

• Dual List*1
 • When the display mode is Numeric, 22 numeric data values each for two measurement functions are displayed in each column.
 • When the display mode is Numeric + Wave, Numeric + Bar*1, 11 numeric data values each for two measurement functions are displayed in each column.

*1 Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option. For the procedure of changing the displayed items on the Single List or Dual List, see chapter 7 in the Expansion Function User’s Manual IM760301-51E.

Note

• [-------] (no data) is displayed in places where the measurement function is not selected or where no numeric data is present.
• If Urms, Umn, Udc, Urmn, Irms, Imn, Idc, or Irmn exceeds 140% of the measurement range, overrange [-OL-] is displayed.
• P shows overrange [-OL-] if the measured values of either the voltage or current exceeds 140% of the measurement range.
• If the measured or computed result cannot be displayed using the specified decimal position or unit, overflow [-OF-] is displayed.
• If Urms or Irms is less than or equal to 0.3% (when the crest factor is set to 3, less than or equal to 0.6% if the crest factor is set to 6) or Umn, Urmn, Imn, or Irmn is less than or equal to 1% of the measurement range (when the crest factor is set to 3, less than or equal to 2% if the crest factor is set to 6), Urms, Umn, Urmn, Imn, Irmn, and the measurement functions that are determined using these measurement functions display zeroes. \(\lambda \) or \(\phi \) displays an error.
• The value of U+pk and I+pk when there are no positive measured values, and the value of U-pk and I-pk when there are no negative measured values are as follows.
 • Products of Firmware Version 4.04 or Later: The maximum value measured is displayed for U+pk and I+pk, and the minimum value measured is displayed for U-pk and I-pk.
 • Products of Firmware Versions Prior to 4.04: Zero is displayed for U+pk, I+pk, U-pk, and I-pk.
• If the measured value of frequency is outside the measurement range, fU or fI displays an error.
• If the power factor \(\lambda \) is greater than 1 and less than or equal to 2, \(\lambda \) becomes [1]. \(\phi \) displays zero.
• If the power factor \(\lambda \) is greater than 2, \(\lambda \) and \(\phi \) display errors.
• If the voltage or current mode is not RMS, CFU or CFI displays no numeric data [-------].
5.1 Displaying Numeric Data and Changing the Displayed Items

- **Changing the Measurement Function**
 - The types of measurement functions that can be selected are the items that are indicated in “Types of Measurement Functions during Normal Measurement” of section 2.2, “User-Defined Function” and Corrected Power of section 2.5, “Measurement Functions of Integration,” “Motor Evaluation Function (Motor Version),” “Delta Computation (Option),” and “Harmonic Measurement (Option)” in section 2.6.
 - For details, see the Expansion Function User’s Manual IM760301-51E.
 - You can also select not to display the measurement functions (None).
 - The number (1, 2, 3, and 4) that is attached to the measurement function symbol of the delta computation has no relation to the element number.
 - The number attached to the user-defined function F1 to F20 is a portion of the measurement function symbol. It is not related to the element number.

- **Changing the Element/Wiring Unit**
 - You can select the element/wiring unit from the choices below. The selectable items vary depending on the installed elements.
 - Element1, Element2, Element3, Element4, \(\Sigma A \), and \(\Sigma B \)
 - If there are no elements that are assigned to the selected wiring unit, there is no numeric data. Thus, [------] (no data) is displayed in this case. For example, if elements are assigned to \(\Sigma A \) and no elements are assigned to \(\Sigma B \), then the measurement function for \(\Sigma B \) shows [------] (no data).

<table>
<thead>
<tr>
<th>U_rms1</th>
<th>0.1046 (\text{V})</th>
<th>U_rms1</th>
<th>0.10513 (\text{V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_rms1</td>
<td>1.6946 (\text{A})</td>
<td>I_rms1</td>
<td>1.6929 (\text{A})</td>
</tr>
<tr>
<td>P1</td>
<td>0.1650 (\text{W})</td>
<td>(\lambda_1)</td>
<td>0.9279</td>
</tr>
<tr>
<td>S1</td>
<td>0.1779 (\text{kVA})</td>
<td>S1</td>
<td>0.1780 (\text{kVA})</td>
</tr>
</tbody>
</table>

- **Resetting the Order of Display Items**
 - You can reset the displayed order of numeric data to a preset order. For details on the reset items, see appendix 2, “List of Initial Settings and Display Order of Numeric Data.”

Note

- For the procedure of changing the displayed items of the measurement functions of harmonic measurement, see chapter 7 in the Expansion Function User’s Manual IM760301-51E.
- For details on the wiring units expressed as \(\Sigma A \) and \(\Sigma B \), see section 4.1, “Selecting the Wiring System.”
- If you supply current exceeding approximately 2.8 Arms to the 2-A input element, the protection circuit activates. The measured value may become 0 A, but the input peak over-range indicator at the top section of the screen illuminates in red.
5.2 Selecting the Voltage/Current Mode (RMS, MEAN, DC, or RMEAN)

Procedure

- **Selecting the Target Element**
 1. Press `ELEMENT` to select the target element. The corresponding element indicator above the key illuminates.

- **Selecting the Voltage Mode**
 2. Press `VOLTAGE RANGE MODE` to select one of the modes from RMS to RMEAN.
 3. Repeat steps 1 and 2 to select the voltage mode of all elements.

- **Selecting the Current Mode**
 4. Press `CURRENT RANGE MODE` to select one of the modes from RMS to RMEAN.
 5. Repeat steps 1 to 4 to select the current mode of all elements.

Explanation

- The voltage and current modes can be selected from the following four modes.
 - RMS: True rms value
 - MEAN: Rectified mean value calibrated to the rms value
 - DC: Simple average
 - RMEAN: Rectified mean value

- The initial setting is RMS. For the method of computing the voltage and current in each mode, see appendix 1.

- When the independent setting of input elements is OFF, the element switches according to the wiring system.

- To measure the RMS and MEAN of voltage simultaneously, use the user-defined function. For details, see section 5.4.

- The voltage and current mode selections are invalid in wide bandwidth harmonic measurement mode and IEC harmonic measurement mode. In this case, the total value of the rms values of each order in the range between the maximum and minimum values of the measured order specified in the harmonic measurement (option) menu is displayed.

- The voltage and current mode selections are invalid in voltage fluctuation and flicker measurement mode.
5.3 Selecting the Frequency Measurement Source

Procedure

1. Press ITEM to display the Numeric menu.
2. Press the Frequency Meas Item soft key to display the Frequency Meas Item dialog box.
 Only the input signal of installed elements are displayed.
3. Press the cursor keys to select Freq1 or Freq2.
4. Press SET. A box used to select the frequency measurement source appears.
5. Press the cursor keys to select the input signal for measuring the frequency.
6. Press SET to confirm the frequency measurement source.
5.3 Selecting the Frequency Measurement Source

Explanation

- You can select two of the input signals of the installed elements to measure the frequency. However, there is no need to specify the frequency measurement signals on the models with the frequency measurement add-on option, because frequencies of all elements can be measured. Thus, the Frequency Meas Item soft key does not appear even when ITEM is pressed.
- The frequency measurement source selection is invalid in cycle-by-cycle measurement mode.

Note

- If the frequency measurement is not stable such as due to noise, try using the frequency filter as explained in section 4.8.
- Frequency cannot be detected if the AC amplitude is small. For details on the detection level for frequency measurement, see section 12.5.
- The measured data for the frequencies of input signals that are not specified for the frequency measurement are shown as [-------] (no data).
5.4 Setting the User-Defined Function

Procedure

1. Press **MEASURE** to display the Measure menu.
2. Press the **User Defined Function** soft key to display the User Defined Function menu.
3. Press any of the soft keys from **User Defined F1** to **F20** to select the user-defined function to be assigned. The User Defined Function dialog box opens.

Turning ON/OFF the User-Defined Function Computation

4. Press the cursor keys to select the desired user-defined function.
5. Press **SET** to select ON or OFF.

Display example when the User Defined F1-F5 soft key is pressed:

<table>
<thead>
<tr>
<th>User Defined Function F1 - F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function 1</td>
</tr>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>Function 2</td>
</tr>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>Function 3</td>
</tr>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>Function 4</td>
</tr>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>Function 5</td>
</tr>
<tr>
<td>Expression</td>
</tr>
</tbody>
</table>

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
5.4 Setting the User-Defined Function

- Setting the Unit
5. Press the cursor keys to select Unit.
6. Press SET. A keyboard appears.
7. Use the keyboard to set the unit.
 For keyboard operations, see section 3.14, “Entering Values and Strings.”

- Setting the Equation
8. Press the cursor keys to select Expression.
10. Use the keyboard to set the equation.
 For keyboard operations, see section 3.14, “Entering Values and Strings.”

Explanation
An equation can be created by combining the measurement function symbols. Using the numeric values of the measurement functions, the numeric data of the new equation can be determined. It is convenient to use a USB keyboard (option) when entering an equation or string with many characters.

- Limitation on the User-Defined Functions by Measurement Mode
There are limitations on the user-defined functions in measurement modes other than normal measurement mode.
- IEC Harmonics Measurement, Voltage Fluctuation and Flicker Measurement, and Cycle-by-Cycle Measurement Modes
 The user-defined function cannot be used.
- Wide Bandwidth Harmonic Measurement Mode, Waveform Computation Mode, and FFT Mode
 Some operands cannot be computed. For details, see appendix 12.

- Turning ON/OFF the User-Defined Function Computation
You can select whether to perform the specified user-defined function computation.
- ON
 Executes the computation.
- OFF
 Does not perform the computation.

- Setting the Unit
- Number of Characters
 Eight characters or less. However, not all eight characters can be shown on the numeric data display. This depends on the number of displayed items (see section 5.1).
- Types of Characters
 Characters that are displayed on the keyboard and spaces
• **Equation Types**
The combination of the measurement function and element number (Urms1, for example) can be used as an operand to create up to 20 equations (F1 to F20). There can be up to 16 operands in one equation. Some operands cannot be computed in measurement modes other than normal measurement mode. For details, see appendix 12.

• **Measurement Functions for Computation**
The operators for the measurement functions are shown below in the form

\[
\text{measurement function: operand}
\]

\[
U: U(,) \\
P: P(,) \\
ϕ: PHI(,) \\
U-pk: UMPK() \\
P-pk: IMPK()^{1} \\
η1: ETA1() \\
Wp: WH() \\
q+: AHP() \\
\text{Time: Ti()}
\]

*1 Can be used on WT3000s with firmware version 5.01 or later.

The following measurement functions can also be specified on models with the motor evaluation function (motor version).

- Speed: SPEED()
- Torque: TORQUE()
- Pm: PM()
- Slip: SLIP()
- SyncSp: SYNC()

The following measurement functions can also be specified on models with delta computation (option).

\[
\Delta F1: DELTA1() \\
\Delta F2: DELTA2() \\
\Delta F3: DELTA3() \\
\Delta F4: DELTA4() \\
\Delta F1mn(): DELTAF1MN()^{*2} \\
\Delta F2mn(): DELTAF2MN()^{*2} \\
\Delta F3mn(): DELTAF3MN()^{*2} \\
\Delta F4mn(): DELTAF4MN()^{*2}
\]

*2 Can be used on WT3000s with firmware version 4.07 or later.

The measurement functions below can be computed on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

\[
\text{ϕU: UPHI(,) } \\
\text{ϕI: IPHI(,) } \\
\text{Z: Z(,) } \\
\text{Rs: RS(,) } \\
\text{Xs: XS(,) } \\
\text{Rhdf: UHDF(,) } \\
\text{Phdf: PHDF(,) } \\
\text{Uthd: UTHD() } \\
\text{Ithd: ITHD() } \\
\text{Uthi: UTHF() } \\
\text{Ithi: ITHF() } \\
\text{Hfi: HVF() } \\
\text{Hcf: HCF() } \\
\text{ϕU1-U2: PHIU1U2() } \\
\text{ϕI1-U3: PHIU1U3() } \\
\text{ϕI1-I2: PHIU1I2() } \\
\text{ϕI1-I3: PHIU1I3()}
\]

On WT3000s with firmware versions 3.01 or later, user-defined functions F1 to F19 can be set.

\[
F1: F1() \\
F2: F2() \\
F3: F3() \\
F4: F4() \\
F5: F5() \\
F6: F6() \\
F7: F7() \\
F8: F8() \\
F9: F9() \\
F10: F10() \\
F11: F11() \\
F12: F12() \\
F13: F13() \\
F14: F14() \\
F15: F15() \\
F16: F16() \\
F17: F17() \\
F18: F18() \\
F19: F19()
\]
5.4 Setting the User-Defined Function

- **Setting the Operand Parameters**
 There are two types of operands with parameters.

- **Setting Operands with Two Parameters**
 Set a symbol representing the element in the left parameter and the order in the right parameter. For example, set the parameters as in (E1, OR2).

- **Symbols representing elements**
 - E1 to E4: Elements 1 to 4
 - E5 and E6: ΣA and ΣB

- **Symbols representing orders**
 - ORT: Normal measured value or total value*1
 - OR0: DC*2
 - OR1: Fundamental wave*2
 - OR2 to OR100: Harmonics*2

*1 A normal value or total value (requires the /G6 option) is substituted depending on the measurement mode.
*2 Requires the /G5 or /G6 option.

- **Setting Operands with a Parameter**
 Set a symbol representing the element. You do not have to set the order. For example, set the parameter as in (E1).

For the symbols that can be set in the parameters of each operand, see appendix 13.

- **Values Substituted in Operands**
 - Urms, Umn, Udc, or Urmn is substituted into U(,) according to the specified voltage mode.
 - Irms, Imn, Idc, or Irmn is substituted into I(,) according to the specified current mode.
 - Values are substituted into URMS() and UMN() according to the voltage/current mode as follows:

<table>
<thead>
<tr>
<th>Voltage mode</th>
<th>RMS</th>
<th>MEAN</th>
<th>DC</th>
<th>RMEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>URMS()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UMN()</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- If the voltage and current modes are set to RMS and UMN() is assigned for the user-defined function, Urms, Umn, Irms, and P can be measured simultaneously.
- If the voltage and current modes are set to MEAN and URMS() is assigned for the user-defined function, Urms, Umn, Imn, and P can be measured simultaneously.
- Urms, Umn, Irms, and Imn cannot be measured simultaneously.
- The substituted value of TI() is the same regardless of which element symbol (E1 to E4) is set in TI(). The unit of TI() is seconds (S).
- Functions η1 to η4 (efficiency 2) are displayed as percentages as indicated by the equations given in appendix 1, “Symbols and Determination of Measurement Functions.” However, ETA1 to ETA4 described in this section are displayed as ratios.

 Example η1: 80 %, ETA1 = 0.8

- The U1 of PHIU1U2 represents the voltage signal of the element whose element number is the smallest in the wiring unit (ΣA or ΣB). For example, if input elements 2, 3, and 4 are assigned to wiring unit ΣA, PHIU1U2 is the phase difference between the voltage signal of input element 2 and that of input element 3.
5.4 Setting the User-Defined Function

The user-defined functions allow you to determine physical values other than those of the measurement functions by combining operands. The measurement functions that can be assigned to the efficiency equation (section 5.7) are fixed to power and motor output. However, by using the user-defined function, an equation consisting of measurement functions other than power and motor output can be set up to determine ratios other than efficiency.

- On WT3000s with firmware versions 1.XX or 2.XX, equations (F1 to F20) cannot be placed inside another equation (F1 to F20).
- On WT3000s with firmware version 3.01 or later, user-defined equations with a smaller equation number can be used as operands in a user-defined equation. For example, F1() + F2() can be defined as an equation for user-defined function F3. This allows equations that would otherwise exceed 50 characters in length to be computed. For example, set equations in F1 and F2, and define F3 as F1() + F2() or F1()/F2(). This feature is also convenient when defining multiple equations that include common operands. For example, set common operands in F1, and define F4=F3()/F1(), F5=F4()/F1(). Note that if you enter an equation number that is greater than equal to its own number, correct results will not be obtained. For example, if you set user-defined function F3 to F1()+F3() or F1()+F4(), the computed result displays no data [- - - - - - -] or overflow [- OF -].
- On WT3000s with firmware version 4.02 or later, if you set the measurement period to ASSP (Average for the Synchronous Source Period), regardless of the selected voltage or current modes, computations for all voltage and current modes (RMS, MEAN, DC, and RMEAN) can be performed simultaneously.

- Operators

 The following operators can be used to create an equation.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+, –, *, /</td>
<td>U(E1,OR1) – U(E2,OR1)</td>
<td>Basic arithmetic of the measurement functions</td>
</tr>
<tr>
<td>ABS</td>
<td>ABS(P(E1,ORT) + P(E2,ORT))</td>
<td>Absolute value of the measurement function</td>
</tr>
<tr>
<td>SQR</td>
<td>SQR(I(E1,OR0))</td>
<td>Square of the measurement function</td>
</tr>
<tr>
<td>SQRT</td>
<td>SQRT(ABS((E1,OR3)))</td>
<td>Square root of the measurement functions</td>
</tr>
<tr>
<td>LOG</td>
<td>LOG(U(E1,OR25))</td>
<td>Natural log of the measurement functions</td>
</tr>
<tr>
<td>LOG10</td>
<td>LOG10(U(E1,OR25))</td>
<td>Common log of the measurement function</td>
</tr>
<tr>
<td>EXP</td>
<td>EXP(U(E1,OR25))</td>
<td>Exponent of the measurement function</td>
</tr>
<tr>
<td>NEG</td>
<td>NEG(U(E1,OR25))</td>
<td>Negation of the measurement function</td>
</tr>
</tbody>
</table>

- Number and Type of Characters That Can Be Used in the Equation

 - Number of characters
 50 characters or less
 - Types of characters
 Characters that are displayed on the keyboard and spaces

- Equation Examples

 When determining the rms value of the harmonic components of the voltage signal of input element 2.

\[\sqrt{\text{(Total rms value of the voltage)}^2 - \text{(Rms value of the fundamental wave of the voltage)}^2} \]
\[\text{SQRT(SQR(U(E2, ORT)) \text{– SQR(U(E2, OR1)))}} \]

- Note

 If an operand in the equation is undetermined, the computation result displays [-------] (no data). For example, this occurs if a measurement function of a delta computation is in the equation, but the delta computation is turned OFF or a measurement function of an element that is installed is in the equation.
5.5 Setting MAX hold

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

Turning ON/OFF the Maximum Hold Function of the Numeric Data Display

1. Press MEASURE to display the Measure menu.
2. Press the User Defined Function soft key to display the User Defined Function menu.
3. Press the Max Hold soft key to select ON or OFF.
5.5 Setting MAX hold

Explanation

Maximum Hold
This function enables the maximum value of the numeric data to be held.

- The item to be held at the maximum value is set using the user-defined function.
 The operators for the measurement functions are shown below in the form measurement function: MAX value (equation for defining the MAX hold).

 U: UMAX() Urms: URMSMAX() Umn: UMEANMAX()
 I: IMAX() P: PMAX() S: SMAX()
 Q: QMAX() U+pk: UPPEAKMAX() U-pk: UMPEAKMAX()
 I+pk: IPPEAKMAX() I-pk: IMPEAKMAX() P+pk: PPPEAKMAX()*2
 P-pk: PMPEAKMAX()*2

 *1 To hold the MAX value of U, enter UMAX() in the equation for the user-defined function.
 *2 Can be used on WT3000s with firmware version 5.01 or later.

- One symbol from E1 to E6 can be entered in the parentheses for UMAX(), IMAX(), PMAX(), SMAX(), and QMAX().
- One symbol from E1 to E4 can be entered in the parentheses for URMSMAX() and UMEANMAX().
- One symbol from E1 to E4 can be entered in the parentheses for UPPEAKMAX() to PMPEAKMAX().
- The maximum value of the data above is held while the MAX hold function is enabled.
- Values are substituted in URMSMAX() and UMEANMAX() only when the voltage mode is RMS and MEAN, respectively.
- The D/A output, the numeric data list that the built-in printer prints, the communication output, and other values are set to the maximum held values.

- Limitations on the MAX Hold Function by Measurement Modes.
 The MAX hold function cannot be used in IEC harmonics measurement, voltage fluctuation and flicker measurement, and cycle-by-cycle measurement modes.

Note
In wide bandwidth harmonic measurement mode,*3 the total value (the total value of each harmonic component)*4 is substituted in the equation.

 *3 Can be set on models with the advanced computation (/G6) option.
 *4 For details, see section 7.1 in the Extension Function User’s Manual IM760301-51E.
5.6 Measuring the Average Active Power

Explanation

The average active power is specified using the user-defined function as follows:

\[
\text{Average active power} = \frac{\text{Integrated power}}{\text{Elapsed time of integration}}
\]

For example, to determine the average active power of element 1, the equation of the user-defined function is set as follows:

\[
\frac{\text{WH}(E1)}{\text{TI}(E1)/3600}
\]

The unit of TI (s) is seconds (S). For the procedure of setting equations, see section 5.4.
5.7 Setting the Equation for Efficiency

Procedure

- Setting the Equation for Efficiency
 1. Press WIRING to display the Wiring menu.
 2. Press the η Formula soft key to display the η Formula dialog box.
 3. Press the cursor keys to set the numerator or denominator of the efficiency equation from η1 to η4.
 4. Press SET. A box used to select the parameters for computing the efficiency appears.
 5. Press the cursor keys to select the parameter for computing the efficiency.
 To set the sum of multiple parameters to the numerator or denominator in the equation, select Udef1 or Udef2.
 6. Press SET to confirm.

- Setting the Parameters for Computing the Efficiency
 1. Press the cursor keys to set the operand of the equation to Udef1 or Udef2.
 2. Press SET. A box used to select the computation parameter appears.
 3. Press the cursor keys to select the computation parameter.
 4. Press SET to confirm.
An efficiency equation can be created by combining the measurement function symbols. Using the numeric values of the measurement functions, the energy conversion efficiency of the device can be determined.

- **Setting the Equation**
 Four efficiency equations (h1 to h4) can be defined by assigning the power of an element, the power of a S function, or the motor output as an operand. To set the sum of multiple measurement function symbols in the operand of the equation, an equation consisting of up to 4 terms can be created using Udef1 and Udef2.

Equation Examples

- **Efficiency of a Single-Phase, Two-Wire Input/Single-Phase, Two-Wire Output Device**
 Given
 Input: Power of element 1 (P1) and
 Output: Power of element 2 (P2)
 Efficiency equation: P2/P1

- **Efficiency of a Single-Phase, Two-Wire Input/Three-Phase, Three-Wire Output Device**
 Given
 Input: Power of element 1 (P1) and
 Output: \(\Sigma\) power of elements 2 and 3 (PΣA)
 Efficiency equation: PΣA/P1

- **Efficiency of a Three-Phase, Three-Wire Input/Three-Phase, Three-Wire Output Device**
 Given
 Input: \(\Sigma\) power of elements 1 and 2 (PΣA) and
 Output: \(\Sigma\) power of elements 3 and 4 (PΣB)
 Efficiency equation: PΣB/PΣA

- **Efficiency of a Single-Phase, Two-Wire Input Motor**
 Given
 Input: Power of element 1 (P1) and
 Output: Motor output (Pm)
 Efficiency equation: Pm/P1

- **Efficiency of a Three-Phase, Three-Wire Input Motor**
 Given
 Input: \(\Sigma\) power of elements 1 and 2 (PΣA) and
 Output: Motor output (Pm)
 Efficiency equation: Pm/PΣA

Note

To correctly compute the efficiency, set the power factor of all elements so that all power units used in the computation are the same. For example, the efficiency over elements or wiring units with mixed power units of W (watt) and J (joule) cannot be computed correctly.

- **Limitations on the Efficiency Computation by Measurement Modes**
 Efficiency cannot be computed in wide bandwidth harmonic measurement, IEC harmonics measurement, voltage fluctuation and flicker measurement, and cycle-by-cycle measurement modes.
5.8 Setting the Wiring, Efficiency, and Two-Wattmeter Method Compensations

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press WIRING to display the Wiring menu.
2. Press the Compensation soft key to display the Compensation dialog box.

- Selecting the Wiring Compensation
3. Press the cursor keys to select the wiring compensation of the desired element from element 1 to 4.
5. Press the cursor keys to select a value between OFF and I-U.
5.8 Setting the Wiring, Efficiency, and Two-Wattmeter Method Compensations

- **Turning ON/OFF the Efficiency Compensation**
 3. Press the *cursor keys* to select Efficiency Compensation.
 4. Press *SET* to select ON or OFF.

- **Turning ON/OFF the Compensation for Two-Wattmeter Method**
 This appears only when the wiring system is set to 3P3W (3V3A) on models with the delta computation option.
 4. Press *SET* to select ON or OFF.

![Compensation Settings Diagram]

Explanation

- **Wiring Compensation**
 Compensates for the loss caused by the wiring of each element. For details, see appendix 8. Set the compensation according to the setting specified for “Effects due to the Amplitude of the Measured Voltage and Current” in section 3.7.
 - If wiring for “When the Measurement Current Is Relatively Small” is used: U-I
 - If wiring for “When the Measurement Current Is Relatively Large” is used: I-U

- **When Set to U-I**
 The measured voltage is determined by subtracting “the voltage applied to the current terminal” from the voltage value of each element. The voltage applied to the current terminal is derived by the equation: the measured current × the input resistance of the current terminal.

- **When Set to I-U**
 The measured current is determined by subtracting “the current that flows through the voltage terminal” from the current value of each element. The current that flows through the voltage terminal is derived by the equation: the measured voltage/the input resistance of the voltage terminal.

- **When Set to OFF**
 Neither of the above compensation is performed.
5.8 Setting the Wiring, Efficiency, and Two-Wattmeter Method Compensations

- **Efficiency Compensation**
 The power measurement on the secondary side of a power transformer such as an inverter includes loss caused by the measurement instrument. This loss appears as error in the efficiency computation. This function compensates for this loss. For details, see appendix 8.

- **Compensation for the Two-Wattmeter Method**
 In the two-power wattmeter method, an error results when current flows through the neutral line. This function computes the current the flows through the neutral line for measurements using the two-wattmeter method with a three-phase, three wire (3V3A) system and adds the compensation value to the measured power. For details, see appendix 8. This function can be set on models with the delta computation option.

Note

- If the current input is an external sensor input (EXT) and the wiring compensation is U-I wiring, wiring compensation is not performed. This is because the instrumental loss of the current measurement is unknown.
- If the current input is an external sensor input (EXT), efficiency compensation is not performed. This is because the instrumental loss of the current measurement is unknown.
- Efficiency compensation and two-wattmeter method compensation are not performed in wide bandwidth harmonic measurement and IEC harmonic measurement modes on models with the advanced computation (/G6) option.
- Wiring compensation, efficiency compensation, and two-wattmeter method compensation are not performed in voltage fluctuation and flicker measurement, and cycle-by-cycle measurement modes. Settings for these compensation functions are invalid.
5.9 Setting the Equations for Apparent Power, Reactive Power, and Corrected Power

Procedure

1. Press **MEASURE** to display the Measure menu.

- **Selecting the Equation for Apparent Power and Reactive Power**
 2. Press the **S, Q Formula** soft key to display the S, Q Formula menu.
 3. Press one of the soft keys from **Type1**, **Type2**, **Type3** to select the equation for apparent power.

 * Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
• Setting the Equation for Corrected Power
 2. Press the **Pc Formula** soft key to display the Pc Formula dialog box.

• Selecting the Applicable Standard
 3. Press the **cursor keys** to select the standard for Pc Formula.

• Setting the Coefficient
 (When the applicable standard of the equation is IEC76-1(1976), IEEE C57.12.90-1993)
 5. Press the **cursor keys** to select P1=.
 6. Press **SET**. A box used to set coefficient P1 appears.
 7. Press the **cursor keys** to set P1.
 8. Press **SET** or **ESC** to close the box.
 9. Press the **cursor keys** to select P2=.
 10. Press **SET**. A box used to set coefficient P2 appears.
 11. Press the **cursor keys** to set P2.
 12. Press **SET** or **ESC** to close the box.
5.9 Setting the Equations for Apparent Power, Reactive Power, and Corrected Power

Explanation

- Selecting the Equations for Apparent Power and Reactive Power
 The equations for apparent power and reactive power can be selected from three types. For details, see section 2.5.

- TYPE 1 (Method Used by Normal Mode of Conventional WT Series Power Meters)
 Active power for three-phase, four-wire system \(P_\Sigma = P_1 + P_2 + P_3 \)
 Apparent power for three-phase, four-wire system \(S_\Sigma = S_1 + S_2 + S_3 = (U_1 I_1 + U_2 I_2 + U_3 I_3) \)
 Reactive power for three-phase, four-wire system \(Q_\Sigma = Q_1 + Q_2 + Q_3 \)

- TYPE 2
 Active power for three-phase, four-wire system \(P_\Sigma = P_1 + P_2 + P_3 \)
 Apparent power for three-phase, four-wire system \(S_\Sigma = S_1 + S_2 + S_3 = (U_1 I_1 + U_2 I_2 + U_3 I_3) \)
 Reactive power for three-phase, four-wire system \(Q_\Sigma = \sqrt{S_\Sigma^2 - P_\Sigma^2} \)

- TYPE 3 (Method Used by Harmonic Mode on the WT1600 and PZ4000)
 This computing equation can be selected on models with the advanced computation (/G6) or harmonic measurement (/G5) option. The harmonic measurement must be performed correctly. For details on harmonic measurement, see chapter 7 in the Expansion Function User’s Manual IM760301-51E.
 Active power for three-phase, four-wire system \(P_\Sigma = P_1 + P_2 + P_3 \)
 Apparent power for three-phase, four-wire system \(S_\Sigma = \sqrt{P_\Sigma^2 + Q_\Sigma^2} \)
 Reactive power for three-phase, four-wire system \(Q_\Sigma = Q_1 + Q_2 + Q_3 \)

Note
There are limitations to setting equations for apparent power and reactive power depending on the measurement mode. For details, see page 2-19.
For example, if you set the equation to TYPE1 in normal measurement mode and switch to IEC harmonic measurement mode, the equation automatically switches to TYPE3. If you switch the measurement mode back to normal measurement, the equation automatically reverts to TYPE1.

Setting the Equation for Corrected Power
Depending on the applicable standard, when the load that is connected to the potential transformer is extremely small, the active power of the potential transformer that is measured needs to be compensated. In such cases, set the compensating equation and the coefficient. Corrected power (Pc) is a measurement function in the normal measurement mode.

- Selecting the Applicable Standard
 Select the standard from below. For the equations of each applicable standard, see section 2.5.
 - IEC76-1(1976), IEEE C57.12.90-1993
 - IEC76-1(1993)

- Setting the Coefficient
 Coefficients P1 and P2 can be specified.
 Set the coefficients in the range of 0.0001 to 9.9999.

Note
Corrected power is computed only when the voltage mode is RMS or MEAN.
5.10 Selecting the Display Format of the Phase Difference

Procedure

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **MEASURE** to display the Measure menu.
2. Press the **Phase** soft key to display the Phase menu.
3. Press either the 180 Lead/Lag or 360 degrees soft key to select the display format of the phase difference.

Cursor keys

1. Press **MEASURE** to display the Measure menu.
2. Press the **Phase** soft key to display the Phase menu.
3. Press either the 180 Lead/Lag or 360 degrees soft key to select the display format of the phase difference.
5.10 Selecting the Display Format of the Phase Difference

Explanation

The phase difference \(\phi \) between the voltage and current indicates the position of the current phase with respect to the voltage of each element. You can select the display mode from below.

- **180 Lead/Lag**

 If the current phase is in the counterclockwise direction with respect to voltage, the current is leading (D) the voltage. If the current phase is in the clockwise direction with respect to the voltage, the current is lagging (G) the voltage. The phase difference is expressed by an angle between 0 to 180°.

- **360 Degrees**

 The phase difference is expressed using an angle between 0 and 360° in the clockwise direction.

Note

- If the measured value of the voltage or current input is zero, [Error] is displayed.
- When both the voltage and current are sinusoids and the ratio of the voltage and current inputs do not differ greatly with respect to the measurement range, the phase difference \(\phi \) of lead and lag are detected and displayed correctly.
- If the computation result of power factor \(\lambda \) exceeds "1," \(\phi \) is displayed as follows:
 - If the power factor \(\lambda \) is greater than 1 and less than equal to 2, \(\phi \) displays zero.
 - If the power factor \(\lambda \) is greater than 2, \(\phi \) displays and error.
- The phase difference, \(\phi_U \) and \(\phi_I \), of harmonic order 1 to 100 of the voltage and current on the harmonic measurement option is always displayed using an angle between 0 and 180° (no sign for lead and negative sign for lag).
5.11 Integration

The integration function has the following five modes.

<table>
<thead>
<tr>
<th>Integration Mode</th>
<th>Start</th>
<th>Stop</th>
<th>Repetitive Operation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual integration mode
The WT3000 keys are used to start/stop the integration.</td>
<td>Key operation</td>
<td>Key operation</td>
<td>---</td>
<td>Section 5.12</td>
</tr>
<tr>
<td>Normal integration mode
A WT3000 key is used to start the integration. When a specified timer value elapses, the integration is stopped.</td>
<td>Key operation</td>
<td>Stopped by a timer</td>
<td>---</td>
<td>Section 5.13</td>
</tr>
<tr>
<td>Repetitive integration mode
A WT3000 key is used to start the integration. When a specified timer value elapses, the integration value is reset and restarted. The above operation is repeated until STOP is pressed.</td>
<td>Key operation</td>
<td>Key operation</td>
<td>Repeated by a timer</td>
<td>Section 5.13</td>
</tr>
<tr>
<td>Real-time normal integration mode
Integration start and stop are specified by date/time.</td>
<td>Date/time</td>
<td>Date/time</td>
<td>---</td>
<td>Section 5.14</td>
</tr>
<tr>
<td>Real-time repetitive integration mode
Integration start and stop are specified by date/time. When a specified timer value elapses, the integration value is reset and restarted.</td>
<td>Date/time</td>
<td>Date/time</td>
<td>Repeated by a timer</td>
<td>Section 5.14</td>
</tr>
</tbody>
</table>

For details on each integration mode, see section 2.6.

- **Starting, Stopping, and Resetting the Integration**
 - The integration can be started, stopped, or reset from the front panel keys or through communication commands.
 - The following figure shows the relationship between the integration operation and start, stop, and reset. Pressing RESET after the integration has stopped resets the integration value and the integration time.
5.11 Integration

- Limitations on the Start, Stop, and Reset of Integration by Measurement Modes
 Integration cannot be started, stopped, or reset in measurement modes* other than normal measurement mode.
 * Wide bandwidth harmonics measurement, IEC harmonic measurement, waveform computation, FFT, voltage fluctuation and flicker measurement, and cycle-by-cycle measurement modes are available.

- Display Related to Integration

<table>
<thead>
<tr>
<th>Normal Mode</th>
<th>Urms1</th>
<th>I rms1</th>
<th>P1</th>
<th>λ1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10778 kV</td>
<td>1.6532 A</td>
<td>0.1650 kW</td>
<td>0.92619</td>
</tr>
</tbody>
</table>

Integ: Reset
Displays Reset when the integrated value is reset and integration can be started

Integ: Start
Displays Start and the elapsed time of integration when integration is in progress

Integ: Stop
Displays Stop and the elapsed time of integration when integration is aborted, canceled, or done

Integ: Ready
Displays Ready when ready in real-time integration mode

Note
In addition to Reset, Start, Stop, and Ready as displays for indicating the integration status, the displays shown in the following table are available.

- **TimeUp**: When integration continues up to the time specified by the integration timer, it automatically stops. The integration status in this condition is considered TimeUp status.
- **Error**: The WT3000 stores and holds the integration result even when a power failure occurs while integration is in progress. When the power recovers, the integration result calculated up to the point when the power failure occurred is displayed with the integration operation stopped. The integration status in this condition is considered Error status.

Displayed when the integration time is set to a value other than 0

<table>
<thead>
<tr>
<th>Displayed when ready</th>
<th>Displayed when the integration time is set to a value other than 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U rms1</td>
<td>97.824 V</td>
</tr>
<tr>
<td>Imn1</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
</tbody>
</table>
• **Holding, Starting, and Stopping the Integration**
When the display is held, the display of the integration result and communication output are held. The integration operation continues regardless of whether the hold function is ON or OFF. The relationship between the hold function and the start and stop operations is as follows:

- If the integration is started while the display is held, the display and communication output do not change. When the hold function is released (OFF) or a single measurement (by pressing SINGLE) is made, the integration result at that point is displayed or output via communications.

- If the integration is stopped while the display is held, the display and communication output values do not change from the held values. When the hold function is released (OFF) or a single measurement (by pressing SINGLE) is made, the integration result at the point when integration is stopped is displayed or output via communications.

Sample Rate and Valid Frequency Range for Integration
The sample rate is approximately 200 kHz. The voltage/current signal frequencies that are valid for the integration are as follows:

<table>
<thead>
<tr>
<th>Integrated Item</th>
<th>Valid Frequency Range for Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active power</td>
<td>DC to 100 kHz</td>
</tr>
<tr>
<td>Current</td>
<td>DC, lower limit of frequency determined by the data update rate to 100 kHz</td>
</tr>
<tr>
<td></td>
<td>DC, lower limit of frequency determined by the data update rate to 100 kHz</td>
</tr>
<tr>
<td></td>
<td>DC to 100 kHz</td>
</tr>
<tr>
<td></td>
<td>DC, lower limit of frequency determined by the data update rate to 100 kHz</td>
</tr>
</tbody>
</table>
• **Display Resolution**
The maximum display resolution of the integration value is 999999. When the integrated value reaches 1000000 counts, the decimal point shifts automatically. For example, if 0.001 mWh is added to 999.999 mWh, the display shows 1.00000 Wh.

• **Display When Integration Overflow Occurs**
If either of the conditions below is met, the integration is stopped, and the integration time and integration value are held.
 • The integration time reaches the maximum integration time (10000 hours).
 • The integration value of WP, q, WS, or WQ reaches the maximum or minimum integration value given below.

• **Maximum/Minimum Displayed Integration Value**
 - Active power (WP): ±999999 MWh
 - Current (q): ±999999 MAh
 - Apparent power (WS): ±999999 MVAh
 - Reactive power (WQ): ±999999 Mvarh

• **Integration When MAX Hold Function Is Enabled**
The integration value is determined and displayed by summing the value that is measured at every display update rate, irrespective of the MAX hold function (section 5.5).

• **Integration When the Measured Value Exceeds the Measurement Limit**
If the instantaneous voltage or current of the sampled data exceeds 300% of the measurement range when the crest factor is set to 3, the value is considered to be the value corresponding to 300% for the purpose of integration. If the instantaneous voltage or current of the sampled data exceeds 600% of the measurement range when the crest factor is set to 6, the value is considered to be the value corresponding to 600% for the purpose of integration.

• **Integration When Current Input Is Small**
Integration is performed assuming a current of zero when the current input with respect to the measurement range is as indicated below.
 • **When the crest factor is set to 3**
 When Irms is less than or equal to 0.3% or Imn or Irmn is less than or equal to 2%
 • **When the crest factor is set to 6**
 When Irms is less than or equal to 0.6% or Imn or Irmn is less than or equal to 4%

• **Using an External Signal to Control Integration (Option)**
On models with the 20-channel D/A output option, you can use the remote control feature to use an external signal to start, stop, and reset integration. For details about the remote control feature, see section 3.4 in the *Extension Function User’s Manual IM760301-51E*.

• **Backup during Power Failures**
 • If a power failure occurs when integration is in progress, the integration result is held. When the power recovers, the integration result calculated up to the point when the power failure occurred is displayed with the integration operation stopped.
 • If the integration is reset after the power recovers, integration can be started once again.
Limitation on Modifying the Settings during Integration

When the integration is in progress, settings of some functions cannot be changed as shown below.

<table>
<thead>
<tr>
<th>Function</th>
<th>Integration Reset</th>
<th>Integrating</th>
<th>Integration Suspended</th>
</tr>
</thead>
<tbody>
<tr>
<td>(START indicator)</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>(STOP indicator)</td>
<td>OFF</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>Wiring system</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Measurement range</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Scaling</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Filter</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Averaging</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Synchronization source</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hold</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Single measurement</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data update rate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Display mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Integration mode</td>
<td>Yes</td>
<td>No (Displayable)</td>
<td>No (Displayable)</td>
</tr>
<tr>
<td>Integration timer</td>
<td>Yes</td>
<td>No (Displayable)</td>
<td>No (Displayable)</td>
</tr>
<tr>
<td>Integration start</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Integration stop</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Integration reset</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Store (excludes integration synchronization mode)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Printer</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Zero-level crossing</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Null</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Yes**: Settings can be modified.
- **No**: Settings cannot be modified.
- Starting integration in auto range mode switches the measurement range to fixed range mode.

Limitation on the Waveform Display Function during Integration

The trigger function (see section 6.3) for waveform display does not work while integration is in progress or is suspended. Therefore, the signal level of the waveform display at the left end of the screen may not be stable.
5.12 Setting the Manual Integration

Procedure

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **INTEG** to display the Integ menu.
2. Press the **Integ Set** soft key to display the Integ Set menu.

- **Selecting the Normal Integration Mode**
3. Press the **Mode** soft key to display the Mode menu.
4. Press the **Normal** soft key to select the integration mode.
5.12 Setting the Manual Integration

- **Setting the Integration Timer**
 5. Press the **Timer Setting** soft key to display the Timer Setting dialog box.
 6. Press the **cursor keys** to select the hour, minute, or second box.
 7. Press **SET** to display the entry box.
 8. Press the **cursor keys** to set the hour, minute, or second that you selected in step 6 to 0.
 9. Press **SET** or **ESC** to close the box.
 10. Repeat steps 6 to 9 to set the hour, minute, and second to 00000:00:00.

- **Performing Integration in the Manual Integration Mode**
 - **Starting the Integration**
 11. Press **INTEG** to display the Integ menu.
 12. Press the **START** soft key. The START indicator to the right of the INTEG key illuminates, and the integration is started.
 - **Holding the Integration**
 13. Press **HOLD**. The HOLD key illuminates, and the numeric data display is held. Integration continues inside the WT3000.
 - **Releasing the Hold Operation**
 14. Press **HOLD** while the values are held. The HOLD key turns OFF, and the numeric data display is updated. In the hold condition, the display can be updated by carrying out single measurements (by pressing SINGLE).
 - **Stopping the Integration**
 15. Press the **STOP** soft key. The START indicator turns OFF and the STOP indicator illuminates. The integration time and integration value are held. Integration continues if you press START at this point.
 - **Resetting the Integration**
 16. Press the **RESET** soft key. The STOP indicator turns OFF, the integration time and integration value are reset, and the display of integration measurement functions such as WP shows [-------] (no data).
5.12 Setting the Manual Integration

For functional details, see section 2.6. To perform integration, the integration mode and integration time must be set before starting the operation.

- **Selecting the Integration Mode and Setting the Integration Timer**
 If the integration mode is set to normal integration and the integration timer is set to 00000:00:00, the integration is performed in manual integration mode.

For a description of starting, stopping, and resetting the integration and other items, see section 5.11.

Note
Integration cannot be started, stopped, or reset in measurement modes other than normal measurement mode.
5.13 Setting the Normal Integration and Repetitive Integration

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press INTEG to display the Integ menu.
2. Press the Integ Set soft key to display the Integ Set menu.

- **Selecting Normal Integration Mode or Repetitive Integration Mode (Continuous)**
3. Press the Mode soft key to display the Mode menu.
4. Press the Normal or Continuous soft key to select the integration mode.
5.13 Setting the Normal Integration and Repetitive Integration

- Setting the Integration Timer
 5. Press the Timer Setting soft key to display the Timer Setting dialog box.
 6. Press the cursor keys to select the hour, minute, or second box.
 7. Press SET to display the entry box.
 8. Press the cursor keys to set the hour, minute, or second that you selected in step 6.
 9. Press SET or ESC to close the box.
 10. Repeat steps 6 to 9 to set the hour, minute, and second.

- Integrating in Normal Integration Mode or Repetitive Integration Mode
 - Starting the Integration
 11. Press INTEG to display the Integ menu.
 12. Press the START soft key. The START indicator to the right of the INTEG key illuminates, and the integration is started.
 - Holding the Integration
 13. Press HOLD. The HOLD key illuminates, and the numeric data display is held. Integration continues.
 - Releasing the Hold Operation
 14. Press HOLD while the values are held. The HOLD key turns OFF, and the numeric data display is updated. In the hold condition, the display can be updated by carrying out single measurements (by pressing SINGLE).
 - Stopping the Integration
 15. Press the STOP soft key. The START indicator turns OFF and the STOP indicator illuminates. The integration time and integration value are held. If you press STOP before the time specified by the integration timer is reached and then press START, integration continues up to the time specified by the integration timer.
 If the time specified by the integration timer elapses in the normal integration mode, the START indicator turns OFF and the STOP indicator illuminates. The integration time and integration value are held.
 If the time specified by the integration timer elapses in the repetitive integration mode, the integration time and integration value are automatically reset, and the integration is repeated until STOP is pressed.
 - Resetting the Integration
 16. Press the RESET soft key. The STOP indicator turns OFF, the integration time and integration value are reset, and the display shows [-------] (no data).
Explanation

For functional details, see section 2.6.
To perform integration, the integration mode and integration time must be set before starting the operation.

- **Selecting the Normal Integration Mode or Repetitive Integration Mode**
 In this mode, the integration time is set in relative time and the integration is performed over the specified time. This mode consists of the following two types.

 - **Normal Integration Mode**
 The integration time is set in relative time. The integration is stopped after the specified time elapses, when the maximum integration time of 10000 hours is exceeded, when STOP is pressed, or when the integration value reaches the maximum or minimum integration display value (see section 5.11). The integration time and value are held at that point.

 - **Repetitive Integration Mode (Continuous Integration)**
 The integration time is set in relative time. When the specified time elapses, the operation is automatically reset and restarted. Integration is repeated until STOP is pressed. When the integration value reaches the maximum or minimum integration display value, the integration time and value are held.

- **Setting the Integration Timer**
 - The time in units of hour:minute:second can be set in the following range.
 00000:00:00 to 10000:00:00

 Note
 If the integration timer is set to 00000:00:00 in normal integration mode, the integration is performed in manual integration mode (see section 2.6 and 5.14).

For a description of starting, stopping, and resetting the integration and other items, see section 5.11.

 Note
 Integration cannot be started, stopped, or reset in measurement modes other than normal measurement mode.
5.14 Setting the Real-Time Integration and Real-Time Repetitive Integration

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press INTEG to display the Integ menu.
2. Press the Integ Set soft key to display the Integ Set menu.

- **Selecting the Real-Time Normal Integration Mode (R-Normal) and Real-Time Repetitive Integration Mode (R-Continuous)**
3. Press the Mode soft key to display the Mode menu.
4. Press either the R-Normal or R-Continuous soft key to select the integration mode.
5.14 Setting the Real-Time Integration and Real-Time Repetitive Integration

- **Setting the Integration Timer**
 5. Press the **Timer Setting** soft key to display the Timer Setting dialog box.
 6. Press the **cursor keys** to select the hour, minute, or second box.
 7. Press **SET** to display the entry box.
 8. Press the **cursor keys** to set the hour, minute, or second that you selected in step 6.
 9. Press **SET** or **ESC** to close the box.
 10. Repeat steps 6 to 9 to set the hour, minute, and second.

- **Setting the Reservation Time**
 11. Press the **Real Time Control** soft key to display the Real Time Control dialog box.
 12. Press the **cursor keys** to select one of the reservation year, month, date, hour, minute, and second boxes for specifying when the integration operation will start.
 13. Press **SET** to display the entry box.
 14. Press the **cursor keys** to set the year, month, date, hour, minute, or second that you selected in step 12.
 15. Press **SET** or **ESC** to close the box.
 16. Repeat steps 12 to 15 to set the year, month, date, hour, minute, and second.
 17. Press the **cursor keys** to select one of the reservation year, month, date, hour, minute, and second boxes for specifying when the integration operation will end.
 18. Repeat steps 13 to 16 to set the year, month, date, hour, minute, and second.
5.14 Setting the Real-Time Integration and Real-Time Repetitive Integration

• Integrating in Real-time Normal Integration Mode or Real-time Repetitive Integration Mode
 • Starting the Integration
 19. Press INTEG to display the Integ menu.
 20. Press the START soft key. The START indicator to the right of the INTEG key illuminates and the instrument enters the ready condition. When the reservation time for starting the integration is reached, the START indicator changes to illumination and the integration is started.

• Holding the Integration
 21. Press HOLD. The HOLD key illuminates, and the numeric data display is held. Integration continues.

• Releasing the Hold Operation
 22. Press HOLD while the values are held. The HOLD key turns OFF, and the numeric data display is updated. In the hold condition, the display can be updated by carrying out single measurements (by pressing SINGLE).

• Stopping the Integration
 23. Press the STOP soft key. The START indicator turns OFF and the STOP indicator illuminates. The integration time and integration value are held. If you press STOP before the time specified by the integration timer is reached and then press START, integration continues up to the time specified by the integration timer.

If the reservation time for stopping the integration is reached in the real-time normal integration mode, the START indicator turns OFF and the STOP indicator illuminates. The integration time and integration value are held. If the time specified by the integration timer elapses in the real-time repetitive integration mode, the integration time and integration value are automatically reset, and the integration is repeated until STOP is pressed or when the reservation time for stopping the integration is reached.

• Resetting the Integration
 24. Press the RESET soft key. The STOP indicator turns OFF, the integration time and integration value are reset, and the display shows [-------] (no data).
5.14 Setting the Real-Time Integration and Real-Time Repetitive Integration

Explanation

For functional details, see section 2.6. To perform integration, the integration mode and integration time must be set before starting the operation.

- **Selecting the Real-time Normal Integration Mode or Real-time Repetitive Integration Mode**
 In this mode, integration is performed between the times specified by integration start and stop. This mode consists of the following two types.

 - **Real-Time Normal Integration Mode**
 The date, time, and integration timer time of start and stop of the integration operation is set. The integration is stopped at the specified time, when the maximum integration time of 10000 hours is exceeded, or when the integration value reaches the maximum or minimum integration display value (see section 5.11). The integration time and value are held at that point.

 - **Real-Time Repetitive Integration Mode (Continuous Integration)**
 The start and stop of the integration operation is set through date and time and the integration timer time. The integration is repeated at the specified timer setting during that time. When the time specified by the timer elapses, the operation is automatically reset and restarted. The integration is stopped at the specified time or when the integration value reaches the maximum or minimum integration display value. The integration time and value are held at that point.

- **Setting the Integration Timer**
 - The time in units of hour:minute:second can be set in the following range.
 00000:00:00 to 10000:00:00

Note

If you set the integration timer time to 00000:00:00 in real-time normal integration mode, the integration starts at the specified start date/time. The integration is stopped at the specified time, when the maximum integration time of 10000 hours is exceeded, or when the integration value reaches the maximum or minimum integration display value. The integration time and value are held at that point.

- **Setting the Reservation Time**
 Set the time to start/stop the integration in year:month:day, hour:minute:second. Make sure the reservation time for stopping the integration is after the reservation time for starting the integration.

 The selectable range of the values is as follows:
 - Year: 4-digit year
 - Hour:minute:second: 00:00:00 to 23:59:59

Note

- The reservation time allows up to 31 days to be specified for February. In this case, an error message is displayed at the time of execution of the integration operation (section 5.13). Reset the reservation time.
- Leap years are recognized at the time of execution of the integration operation.

For a description of starting, stopping, and resetting the integration and other items, see section 5.11.
5.15 Turning ON/OFF the Integration Auto Calibration

Procedure

1. Press INTEG to display the Integ menu.
2. Press the Integ Set soft key to display the Integ Set menu.

Turning ON/OFF the Integration Auto Calibration
3. Press the Auto Cal soft key to select ON or OFF.

Explanation

Turning ON/OFF Integration Auto Calibration
Zero-level compensation is normally performed when the measurement range or line filter is changed. However, zero-level compensation can be automatically performed during integration.

- **ON**: Zero-level compensation is automatically performed every hour while integration is in progress.
- **OFF**: Zero-level compensation is not automatically performed while integration is in progress.

Note
When integration auto calibration is ON and zero-level compensation is in progress, the power or current value measured immediately before is integrated.
6.1 Waveform Display

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

• Displaying the Waveform on the Entire Screen

1. Press WAVE to display the waveform screen.
 If wide bandwidth harmonic measurement mode is enabled on models with the advanced computation (/G6) option, switch to normal measurement mode. For the procedure, see section 3.16.

• Displaying the Waveform by Dividing the Display into Halves (Split Display)

2. Press OTHERS to display the Others menu.
3. Press any of the soft keys from Numeric+Wave, Wave+Bar,*1 Wave+Trend, and Wave+FFT*2 to select the display mode.

 *1 Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

 *2 Displayed only to products with the advanced computation (/G6) option.
6.1 Waveform Display

For functional details, see section 2.7. A display example is shown below. For the procedure to change the displayed items and contents of waveforms, see sections 6.2 to 6.8.

- **Selecting the Display Mode**
 Select the waveform display format from the following:
 - **Displaying the Waveform on the Entire Screen**
 Press the WAVE key to display the waveform on the entire screen.
 - **Displaying the Waveform by Dividing the Display into Halves (Split Display)**
 - Numeric+Wave
 The numeric data and waveform are displayed separately in the top and bottom windows. For details on how to set the numeric data display, see section 3.15 and chapter 5.
 - Wave+Bar
 The waveform and bar graph are displayed separately in the top and bottom windows. For details on how to set the bar graph display, see the Expansion Function User’s Manual IM760301-51E.
 - Wave+Trend
 The waveform and trend are displayed separately in the top and bottom windows. For details on how to set the trend, see chapter 7.

 In addition, the measurement period of the numeric data and that of the waveform data may not be synchronized.

Measurement Mode during Waveform Display
When waveforms are displayed, the measurement mode indication at the upper left corner of the screen is set to Normal Mode (Trg). This mode in normal measurement mode (normal mode) allows a measurement to be made after a trigger (see section 6.3) is detected for each update interval.

Note
- If the trigger is not set correctly, the start position (the signal level at the left end of the screen) of the waveform display may be unstable, or waveforms may not be displayed.
- While integration is in progress or is suspended, the measurement mode indication at the upper left corner of the screen is set to Normal Mode even when waveforms are displayed. In this mode, the sampled data is automatically updated for each interval. In this case, the trigger function for waveform display does not work. Therefore, the start position of the waveform display (the signal level at the left end of the screen) may not be stable. In addition, the measurement period of the numeric data and that of the waveform data may not be synchronized.
6.2 Selecting the Waveform to Be Displayed

Procedure

1. Press ITEM to display the Wave Items menu.

 If the waveform display is at the lower section of the screen on the split display, press SHIFT+ITEM (LOWER ITEM).

2. Press the Wave Display soft key to display the Wave Display dialog box.

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
6.2 Selecting the Waveform to Be Displayed

- Turning ON/OFF the Display the Input Signal Waveforms Collectively
 - Displaying the Waveforms Collectively
 3. Press the cursor keys to select All ON.
 4. Press SET. All the buttons to the left of the input signal are highlighted, and all the waveforms are displayed.

- Hiding the Waveforms Collectively
 3. Press the cursor keys to select All OFF.
 4. Press SET. The highlighting of all the buttons to the left of the signal is cleared, and the waveforms are no longer displayed.

- Turning ON/OFF the Input Signal Waveforms One at a Time
 3. Press the cursor keys to select the input signal you wish to set.
 4. Press SET. The button to the left of the selected input signal is highlighted, and the corresponding waveform is displayed. If the highlighting of the button is cleared, the waveform of that input signal is no longer displayed.

Explanation

Only the input signals corresponding to the installed elements are displayed. The waveform display can be turned ON/OFF for those input signals. For models with the motor evaluation function (motor version), the waveform display for Speed and Torque input signals can be turned ON/OFF through this procedure.
6.3 Setting the Time Axis

Procedure

1. Press **FORM** to display the Wave Form menu. If the waveform display is at the lower section of the screen on the split display, press **SHIFT+FORM** (LOWER FORM).

2. Press the **cursor keys** to set the time axis. When the display of scale values is turned ON (see section 6.8), the times at the left end (fixed to 0 s) and the right end of the screen are displayed in the lower left corner and lower right corner of the screen, respectively.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
6.3 Setting the Time Axis

Explanation

For functional details, see section 2.7.
Set the time axis in terms of Time/div (time per grid).
The time axis can be set in 1, 2, or 5 steps in the range up to the point in which the time corresponding to one screen is equal to the data update interval. For example, changing the time per division in the order 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms, 20 ms, and 50 ms when the data update interval is 500 ms changes the time corresponding to one screen in the order 5 ms, 10 ms, 20 ms, 50 ms, 100 ms, 200 ms, and 500 ms.

- Number of data points displayed in the range from the left to the right end of the screen
- When "P-P" is displayed, waveform is displayed using P-P compression (see section 2.7)

Time at the left end of the screen (fixed to 0 s)
Time at the right end of the screen (time span of the screen)

Time/div setting
6.4 Setting the Trigger

Procedure

1. Press FORM to display the Wave Form menu.
 If the waveform display is at the lower section of the screen on the split display, press SHIFT+FORM (LOWER FORM).
2. Press the Trigger soft key to display the Trigger menu.

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
Selecting the Trigger Mode
3. Press the Mode soft key to select Auto or Normal.

Selecting the Trigger Source
4. Press the cursor keys to select any of the elements/wiring units starting with U1.
5. Press SET to confirm the new trigger source.

Selecting the Trigger Slope
3. Press the Slope soft key to select , , or .

Setting the Trigger Level
3. Press the cursor keys to set the trigger level.
6.4 Setting the Trigger

Explanation

For functional details, see section 2.7.
A trigger is a cue used to display the waveform on the screen. The trigger is activated when the specified trigger condition is met. At this point, the waveform is ready to be displayed on the screen.

• Selecting the Trigger Mode.
 Trigger mode specifies the conditions for updating the screen display. You can select the measurement range from the following:
 • Auto
 Enables auto mode.
 • If a trigger occurs within the timeout time (approx. 100 ms), the display is updated using that trigger.
 • If a trigger does not occur within the timeout time, the display is automatically updated when the timeout time elapses.
 • When the trigger signal period is greater than or equal to 100 ms, the two conditions above are met alternately and the display is updated. In this happens, use normal mode.
 • Normal
 Enables normal mode.
 • The display is updated when the trigger occurs.
 • The display is not updated if the trigger does not occur.

• Selecting the Trigger Source
 Select the target to which the trigger condition is applied (trigger source) from below. The selectable items vary depending on the installed elements.
 U1, I1, U2, I2, U3, I3, U4, I4, and Ext Clk (external clock)*
 * If the trigger source is set to Ext Clk, apply a signal according to the following specifications. If the trigger source is set to Ext Clk, the trigger level settings are void.

• When Setting the Trigger Source to Ext Clk
 Apply a trigger signal to the external clock input connector (EXT CLK) on the rear panel according to the following specifications.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
</tr>
<tr>
<td>Input level</td>
<td>TTL</td>
</tr>
<tr>
<td>Minimum pulse width</td>
<td>1 µs</td>
</tr>
<tr>
<td>Trigger delay time</td>
<td>Within (1 µs + 1 sample interval)</td>
</tr>
</tbody>
</table>

CAUTION

Applying a voltage outside the range of 0 to 5 V to the external clock input connector (EXT CLK) can damage the instrument.
6.4 Setting the Trigger

- Input Circuit for the External Trigger Signal and Time Chart

- Selecting the Trigger Slope
The up and down movement of a signal level is called a slope. When the slope is used as one of the trigger conditions, it is called a trigger slope. You can select the trigger slope from the following:
- : The trigger occurs when the trigger source signal rises above the trigger level from a lower level.
- : The trigger occurs when the trigger source signal falls below the trigger level from a higher level.
- : Trigger occurs on both the rising and falling cases.

- Setting the Trigger Level
Trigger level refers to the level through which the trigger slope passes. When the slope of the trigger source passes through the specified trigger level on a rising or falling edge, a trigger occurs.
- The level can be set in the range of 0.0 to ±100.0%.
- Half of the total vertical span of the waveform display screen is considered to be 100%. With the vertical center of the screen taken to be the input zero line, the upper and lower limits of the waveform display screen are 100% and −100%, respectively. If the crest factor is set to 3, the upper and lower limits of the waveform display screen correspond to three times the measurement range (if scaled, the range after scaling) of the voltage/current that is set for each element. Likewise, if the crest factor is set to 6, the upper and lower limits correspond to six times the measurement range.
- The trigger level setting is void when the trigger source is set to Ext Clk.

- Measurement range: 100 Vrms when the crest factor is 3, 50 Vrms when the crest factor is 6
- Trigger level: 25%
6.4 Setting the Trigger

Note

- To prevent erroneous operation caused by noise, the trigger function uses approximately 2% hysteresis if the crest factor is set to 3. For example, if the trigger slope is set to \(f \), a trigger occurs if the input signal passes through the trigger level on the rising edge after the input signal level falls approximately 2% below the trigger level. The trigger function uses approximately 4% hysteresis if the crest factor is set to 6.
- The trigger function for waveform display does not work while integration is in progress or is suspended. Therefore, the start position of the waveform display (the signal level at the left end of the screen) may not be stable. In addition, the measurement period of the numeric data and that of the waveform data may not be synchronized.
6.5 Zooming Vertically and Moving the Vertical Position

Procedure

To exit the menu during operation, press ESC located above the soft keys.
In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press ITEM to display the Wave Items menu.
 - If the waveform display is at the lower section of the screen on the split display, press SHIFT+ITEM (LOWER ITEM).

2. Press the V Zoom & Position soft key to display the V Zoom & Pos menu.

• Selecting the Target Element
3. Press the Element soft key to display the Element menu.
 - Only the installed elements are displayed.
4. Press one of the soft keys corresponding to the displayed element to select the target element.
6.5 Zooming Vertically and Moving the Vertical Position

• Zooming in on the Voltage Waveform
 5. Press the (U) V Zoom soft key.
 6. Press the cursor keys to set the zoom rate.

• Moving the Voltage Waveform Position
 5. Press the (U) Position soft key.
 6. If the crest factor is set to 3 or 6, press the cursor keys to set the position in terms of a percentage with the value equal to measurement range × 3 or measurement range × 6, respectively, taken to be 100%.

• Zooming in on the Current Waveform
 5. Press the (I) V Zoom soft key.
 6. Press the cursor keys to set the zoom rate.

• Moving the Current Waveform Position
 5. Press the (I) Position soft key.
 6. If the crest factor is set to 3 or 6, press the cursor keys to set the position in terms of a percentage with the value equal to measurement range × 3 or measurement range × 6, respectively, taken to be 100%.
6.5 Zooming Vertically and Moving the Vertical Position

Explanation

- **Selecting the Target Element to Be Specified**
 Only the installed elements are displayed. The Element menu is displayed according to the element configuration of the product.

- **Zoom (Vertical Direction Only)**
 You can expand or reduce each displayed waveform (voltage/current). You can select the zoom factor from the following:
 0.1, 0.2, 0.25, 0.4, 0.5, 0.75, 0.8, 1, 1.14, 1.25, 1.33, 1.41, 1.5, 1.6, 1.77, 2, 2.28, 2.66, 2.83, 3.2, 3.54, 4, 5, 8, 10, 12.5, 16, 20, 25, 40, 50, and 100

- **Moving the Position (Vertical Direction Only)**
 The displayed position of the waveform can be moved vertically to the desired position such as when you wish to view the mutual relationship between the voltage and current waveforms or when the section of the waveform you wish to view goes out of the display frame.
 - The position can be set in the range from 0.000 to ±130.000%.
 - When the zoom factor is 1, half of the total vertical span of the waveform display screen (equal to measurement range × 3 or measurement range × 6 when the crest factor is set to 3 or 6, respectively) is considered to be 100%. The span between the vertical center of the screen to the upper limit of the screen is 100%; the span between the vertical center of the screen to the lower limit of the screen is –100%.

![Diagram of waveforms with zoom and position adjustments](image)

- When the zoom factor is not 1, the value equal to the measurement range × 3 (100%) or measurement range × 6 (100%) when the crest factor is set to 3 or 6, respectively, is not located at the upper and lower limits of the screen as shown in the following figure. Set the position by paying attention to the zoom factor. The following figure shows an example when the crest factor is set to 3.

![Diagram showing range adjustments with crest factor set to 3](image)

Note

To expand and view a section of the waveform, we recommend the following procedure.

1. Set the zoom factor to 1.
2. Move the vertical position so that the desired section of the waveform is at the center position (according to the procedure described in this section).
3. Set the vertical zoom factor.
6.6 Waveform Display on Divided Windows

Procedure

1. Press **FORM** to display the Wave Form menu.
 - If the waveform display is at the lower section of the screen on the split display, press **SHIFT+FORM (LOWER FORM)**.

- **Selecting the Number of Screen Divisions**

2. Press the **Format** soft key to display the Format menu.
3. Press any of the keys from **Single** to **Quad** to select the number of windows.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

Attributes

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Current Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Set</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>MEASURING</td>
<td>MEASURING</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>AUTO</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Display

<table>
<thead>
<tr>
<th>Numeric</th>
<th>Wave</th>
<th>U/I/P</th>
<th>B/D/J/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>Form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item & Element

<table>
<thead>
<tr>
<th>User Info</th>
<th>Mode</th>
<th>Auto Mode</th>
<th>Auto Mode</th>
<th>Auto Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Update

<table>
<thead>
<tr>
<th>Rate</th>
<th>Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td>Rate</td>
</tr>
<tr>
<td>Rate</td>
<td>Hold</td>
</tr>
</tbody>
</table>

Wiring Mode

<table>
<thead>
<tr>
<th>Auto Mode</th>
<th>Auto Mode</th>
<th>Auto Mode</th>
<th>Auto Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor</td>
</tr>
</tbody>
</table>

Cursor Keys

- To exit the menu during operation, press **ESC** located above the soft keys.
- In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **FORM** to display the Wave Form menu.
 - If the waveform display is at the lower section of the screen on the split display, press **SHIFT+FORM (LOWER FORM)**.

- **Selecting the Number of Screen Divisions**

2. Press the **Format** soft key to display the Format menu.
3. Press any of the keys from **Single** to **Quad** to select the number of windows.
• Selecting the Waveform Mapping

4. Press the Wave Mapping soft key to display the Wave Mapping dialog box.
5. Press SET to set the mode to Auto, Fixed, or User. If you selected User, proceed to step 6.
6. Press the cursor keys to select the input signal you wish to set.
7. Press SET. A box used to set the display position number appears.
8. Press the cursor keys to select a value between 0 and 3.
9. Press SET to confirm the new display position.
6.6 Waveform Display on Divided Windows

Explanation

The screen can be evenly divided and the waveforms can be assigned to the divided windows.

- **Selecting the Number of Divisions**

 Select the number of divisions of the screen from the choices below.

 - Single: No division
 - Dual: 2 divisions
 - Triad: 3 divisions
 - Quad: 4 divisions

 The number of displayed points in the vertical direction of one divided window varies depending on the number of divisions as follows:

 - Single: 432 points
 - Dual: 216 points
 - Triad: 144 points
 - Quad: 108 points

- **Waveform Mapping**

 - **Auto**

 The waveforms that are turned ON (see section 6.1) are assigned to the divided windows in order by element numbers in the order voltage (U), current (I), Speed, Torque, Math1, and Math2.

 *1 Applicable only to products with the motor evaluation function (motor version).

 *2 Applicable only to products with the advanced computation (/G6 option). Math waveforms are displayed only in waveform computation mode.

 - **Fixed**

 The waveforms are assigned in order by element number in the order voltage (U) and current (I) to the divided windows regardless of whether or not the display is turned ON. Speed is displayed in the top frame; Torque is displayed in the 2nd frame from the top.

 The following figure shows how the waveforms are displayed when all 4 elements are installed, with the motor evaluation function (motor version), the number of division is 4 (Quad), display of U1, I1, U2, I2, U3, I3, I4, and Torque is ON, and display of U4 and Speed is OFF.

 ![Waveform Display on Divided Windows](image)

- **User**

 The waveforms can be assigned arbitrarily to the divided windows regardless of whether or not the display is turned ON. You can select the display position from 0 to 3. The waveforms are assigned in order starting from number 0 from the top divided window.

 User (when the screen is divided into three windows with I1, Speed, and Torque set to 0, 1, and 3, respectively)

 ![Waveform Display on Divided Windows](image)
6.7 Selecting the Display Interpolation and Graticule

Procedure

To exit the menu during operation, press ESC located above the soft keys.
In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press FORM to display the Wave Form menu. If the waveform display is at the lower section of the screen on the split display, press SHIFT+FORM (LOWER FORM).

2. Press the Display Setting soft key to display the Disp Setting menu.

 Selecting Whether to Interpolate the Display

3. Press the Interpolate soft key to select \(\cdot \cdot \cdot \) or \(\cdot \cdot \cdot \).

1. Press FORM to display the Wave Form menu. If the waveform display is at the lower section of the screen on the split display, press SHIFT+FORM (LOWER FORM).

2. Press the Display Setting soft key to display the Disp Setting menu.

Selecting Whether to Interpolate the Display

3. Press the Interpolate soft key to select \(\cdot \cdot \cdot \) or \(\cdot \cdot \cdot \).
6.7 Selecting the Display Interpolation and Graticule

- Changing the Graticule
 3. Press the Graticule soft key to select □, □, or □.

![Graticule soft key](image)

Explaination

For functional details, see section 2.7.

- Selecting Whether to Interpolate the Display
 When there are less than 500 points of sampled data on the time axis, the area between the display points (rasters) is no longer continuous. This function interpolates between the points to display the waveforms. You can select the measurement range from the following:

 - □□: No interpolation is performed.
 - When the area is not an interpolation area
 ![No interpolation](image)
 - When the area is an interpolation area
 ![Interpolation area](image)

 - □□: Linearly interpolates between two points.
 - When the area is not an interpolation area
 ![Linear interpolation](image)
 - When the area is an interpolation area
 ![Linear interpolation area](image)

- Selecting Whether to Interpolate the Display
6.7 Selecting the Display Interpolation and Graticule

- **Changing the Graticule**
 Select the grid or cross scale to display on the screen from the choices below.

- [] Grid display

- [] No grid or cross scale display

- [] Cross scale display
6.8 Turning ON/OFF the Scale Value and Waveform Label

Procedure

1. Press **FORM** to display the Wave Form menu.
 If the waveform display is at the lower section of the screen on the split display, press **SHIFT+FORM (LOWER FORM)**.

2. Press the **Display Setting** soft key to display the Disp Setting menu.

 - **Turning ON/OFF the Scale Value Display**
 3. Press the **Scale Value** soft key to select ON or OFF.

 - **Turning ON/OFF the Waveform Label**
 3. Press the **Label** soft key to select ON or OFF.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the *cursor keys*” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
6.8 Turning ON/OFF the Scale Value and Waveform Label

Explanation

• Turning ON/OFF the Scale Value Display
 You can select whether or not to display (ON/OFF) the upper and lower limits of the vertical axis and the values at the left and right ends of the horizontal axis (time axis, see section 6.3) of each channel.
 • ON
 Displays the scale values.
 • OFF
 Does not display the scale values.

• Turning ON/OFF the Label Display
 You can select whether to display waveform labels (input signal names).
 • ON
 Displays the label name.
 • OFF
 Does not display the label name.
6.9 Cursor Measurement

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press SHIFT+MEASURE(CURSOR) to display the Cursor menu.

- Turning ON/OFF Cursor Measurement
 2. Press the Wave Cursor soft key to select ON or OFF.

 If ON is selected, the result of the cursor measurement is displayed.
• Selecting the Target Waveform for Cursor Measurement
 • Selecting the Target Waveform for Cursor +
 3. Press the Wave C1 Trace soft key. A box used to select the target waveform appears.
 4. Press the cursor keys to select any of the elements/wiring units starting with U1.
 5. Press SET to confirm the new target waveform.

• Selecting the Target Waveform for Cursor x
 3. Press the Wave C2 Trace soft key. A box used to select the target waveform appears.
 4. Press the cursor keys to select any of the elements/wiring units starting with U1.
 5. Press SET to confirm the new target waveform.

• Selecting the Movement Path of the Cursor
 6. Press the Cursor Path soft key to display the Cursor Path menu.
 7. Press any of the soft keys from Max to Mid to select the movement path.

• Moving the Cursor
 8. Press the Wave C1 +/Wave C2 x soft key to set the cursor target to Wave C1 +, Wave C2 x, or both Wave C1 + and Wave C2 x.
 • If you select Wave C1 +, the position of cursor + can be moved.
 • If you select Wave C2 x, the position of cursor x can be moved.
 • If you select both Wave C1 + and Wave C2 x, the two cursors can be moved without changing the spacing between the two. The value of the digit being specified by Wave C1 + changes.
 9. Press the cursor keys to move the cursor.
6.9 Cursor Measurement

For functional details, see section 2.6.

- **ON/OFF**
 A cursor can be placed on the displayed waveform to measure and display the value at any point. It can be used to measure the voltage and current of various sections of the waveform and the data on the horizontal axis (X-axis).
 - ON: Performs cursor measurement.
 - OFF: Does not perform cursor measurement.

- **Item under Measurement**
 Select the target waveform for the cursor measurement from below. The selectable items vary depending on the installed elements.
 U1, I1, U2, I2, U3, I3, U4, I4, Speed,*1 Torque,*1 Math1,*2 and Math2*2
 *1 Applicable only to products with the motor evaluation function (motor version).
 *2 Applicable only to products with the advanced computation (/G6 option). Math waveforms are displayed only in waveform computation mode.

- **Measured items**
 - Y+: Vertical value of cursor + (Y-axis value)
 - Yx: Vertical value of cursor x (Y-axis value)
 - ∆Y: The difference between the Y-axis values of cursor + and cursor x
 - X+: X-axis value of cursor + from the left end of the screen
 - Xx: X-axis value of cursor x from the left end of the screen
 - ∆X: The difference between the X-axis values of cursor + and cursor x
 - 1/∆X: Reciprocal of the difference between the X-axis values of cursor + and cursor x

- **Movement Path of the Cursor**
 Since the WT3000 P-P compresses the sampled data (see section 2.7), two data points, maximum and minimum values, are displayed at the same time axis position. Therefore, you can select the path on which the cursor moves and the data on which to perform cursor measurements from the following:
 - Max
 Moves along the maximum values on the time axis and measures the value at each point.
 - Min
 Moves along the minimum values on the time axis and measures the value at each point.
 - Mid
 Moves along the middle of the maximum and minimum values on the time axis and measures the value at each point.

- **Moving the Cursor**
 - Cursors move on the selected waveform.
 - The range of movement of cursors is from the left end to the right end of the screen.
 - The movement step of cursors is (the time corresponding to one screen) ÷ 500.

Note

- If immeasurable data exists, *** is displayed in the measured value display area.
- ∆Y is measured even if the unit is different. The result has no unit in this case.
- If the crest factor is set to 3, the allowed range of cursor measurement vertically is ±300% of the range. If the crest factor is set to 6, it is ±600% of the range.
7.1 Trend Display

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

- Displaying Trends
 1. Press OTHERS to display the Others menu.
 2. Press any of the soft keys from Trend, Numeric+Trend, Wave+Trend, and Bar+Trend to select the display mode.
 * Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.
 If wide bandwidth harmonic measurement mode is enabled on models with the advanced computation (/G6) option, switch to normal measurement mode. For the procedure, see section 3.16.

Press the Next 1/3 soft key

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

- Displaying Trends
 1. Press OTHERS to display the Others menu.
 2. Press any of the soft keys from Trend, Numeric+Trend, Wave+Trend, and Bar+Trend to select the display mode.
 * Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.
 If wide bandwidth harmonic measurement mode is enabled on models with the advanced computation (/G6) option, switch to normal measurement mode. For the procedure, see section 3.16.
A display example is shown below. The horizontal axis is expressed in terms of time as shown below.

The trend value in the hold condition (see section 4.11) is the same as the numeric data when HOLD is pressed. When hold is released, the trend that was held is displayed.

- Number of data points displayed in the range from the left to the right end of the screen
- When "P-P" is displayed, trend is displayed using P-P compression (see sections 2.7 and 2.8)

Selecting the Display Mode

Select the trend display format from the choices below.

- Displaying the trend on the entire screen
 - Press the Trend soft key to display the trend on the entire screen.

- Displaying the trend by dividing the display into halves (split display)
 - Numeric+Trend
 - The numeric data and trend are displayed separately in the top and bottom windows. For details on how to set the numeric data display, see section 3.15 and chapter 5.
 - Wave+Trend
 - The waveform and trend are displayed separately in the top and bottom windows. For details on how to set the waveform display, see section 6.
 - Bar+Trend
 - The bar graph and trend are displayed separately in the top and bottom windows. For details on how to set the bar graph display, see the Expansion Function User's Manual IM760301-51E.

Note

Trends are not displayed if wide bandwidth harmonic measurement mode is enabled on models with the advanced computation (/G6) option.
7.2 Selecting the Trend Data to Be Displayed

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **ITEM** to display the Trend Items menu.
 If the trend display is at the lower section of the screen on the split display, press **SHIFT+ITEM (LOWER ITEM)**.
2. Press the **Trend Display** soft key to display the Trend Display dialog box.
7.2 Selecting the Trend Data to Be Displayed

- Turning ON/OFF the Trend Display Collectively
 - Displaying the Trends Collectively
 3. Press the cursor keys to select All ON.
 4. Press SET. All the buttons to the left of the trend symbols are highlighted, and all the trend are displayed.

- Hiding the Trends Collectively
 3. Press the cursor keys to select All OFF.
 4. Press SET. The highlighting of all the buttons to the left of the trend symbols is cleared and the trends are no longer displayed.

- Turning ON/OFF the Trend One at a Time
 3. Press the cursor keys to select the trend symbol you wish to set.
 4. Press SET. The button to the left of the selected trend symbol is highlighted, and the corresponding trend is displayed. If the highlighting of the button is cleared, the trend is no longer displayed.

Explanation

You can turn ON/OFF the trend display from trend 1 (T1) through trend 16 (T16). You can assign measurement functions for which the trend is to be displayed to trend (T1) to trend (T16) by selecting the trend display target (see section 7.3).
7.3 Selecting the Trend Display Target

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press ITEM to display the Trend Items menu.
 If the trend display is at the lower section of the screen on the split display, press SHIFT+ITEM (LOWER ITEM).
2. Press the Trend Items soft key to display the Trend Items menu.
7.3 Selecting the Trend Display Target

• Selecting the Item to Be Set
3. Press the Trend Object soft key.
4. Press the cursor keys to select a value between T1 and T16.

• Selecting the Measurement Function
5. Press the Function soft key. The measurement function selection box appears.
6. Press the cursor keys to select any of the measurement functions starting with U.
7. Press SET to confirm.

• Selecting the Element/Wiring Unit
8. Press the Element/Σ soft key to display the element/wiring unit selection box.
9. Press the cursor keys to select any of the elements/wiring units starting with Element1.
10. Press SET to confirm.

• Selecting the Harmonic Order (Applicable Only on Models with the Advanced Computation Option or the Harmonic Measurement Option)
11. Press Order soft key.
12. Press the cursor keys to select the order from --- (normal measured value) and 0 to the maximum measured order (see section 7.5 in the Expansion Function User’s Manual).

To check the trend display settings, use the setup parameter list function (see section 3.16).
Set the item to be shown on the trend display. You can set 16 lines of trends, trend 1 (T1) through trend 16 (T16).

- **Selecting the Measurement Function**
 - The measurement functions that can be selected are the items that are indicated in “Types of Measurement Functions during Normal Measurement” of section 2.2, “User-Defined Function” and Corrected Power of section 2.5, “Measurement Functions of Integration,” “Motor Evaluation Function (Motor Version),” “Delta Computation (Option),” and “Harmonic Measurement (Option)” in section 2.6.
 - For details, see the Expansion Function User’s Manual IM760301-51E.

- **Selecting the Element/Wiring Unit**
 - You can select the element/wiring unit from the choices below. The selectable items vary depending on the installed elements.
 - Element1, Element2, Element3, Element4, ΣA, and ΣB
 - If there are no elements that are assigned to the selected wiring unit, there is no numeric data. Thus, the trend is not displayed. For example, if elements are assigned to ΣA and no elements are assigned to ΣB, then the trend of the measurement function for ΣB is not displayed.

- **Changing the Harmonic Order (Applicable Only on Models with the Harmonic Measurement Option)**
 - The measured order can be set to normal measured value (---) or from dc (0th order) up to 100th order.

Note
- For the meanings of the measurement function symbols that are displayed, see section 2.2, “Measurement Functions and Measurement Periods,” 2.5, “Computation,” 2.6, “Integration,” and appendix 1, “Symbols and Determination of Measurement Functions.”
- For details on the wiring units expressed as ΣA and ΣB, see section 4.1, “Selecting the Wiring System.”
- The trend is not displayed where the measurement function is not selected or where no numeric data is present.
- The measured order can be set to normal measured value (---) or from dc (0th order) up to 100th order. However, the numeric data up to the upper limit of the measured order (see the Expansion Function User’s Manual IM760301-51E) is automatically determined from the minimum measured order (Min Order) to the PLL source frequency is the data determined by the harmonic measurement.
- If the trend display target is changed, all past trend displays are cleared, and the trend display starts from the right end.
- In wide bandwidth harmonic measurement mode on models with the advanced computation (/G6) option, the total value is displayed in place of the normal measured value (---) for the order setting. However, the trend of the total value cannot be displayed, because trends cannot be displayed in wide bandwidth harmonic measurement mode. If the mode is switched to normal measurement in this condition, the normal measured value (---) is displayed as the order.
7.4 Setting the Time Axis

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press FORM to display the Trend Form menu. If the trend display is at the lower section of the screen on the split display, press SHIFT+FORM (LOWER FORM).
2. Press the cursor keys to set the time axis. When the display of scale values is turned ON (see section 6.8), the times at the left end (fixed to 0 s) and the right end of the screen are displayed in the lower left corner and lower right corner of the screen, respectively.
7.4 Setting the Time Axis

Explanation

Set the time axis in terms of T/div (time per grid).
Set the time per division in the range of 3 s to 1 day.
The data update interval of the trend is determined by the data update rate and the time axis (T/div). For example, if the data update rate and T/div are set to 50 ms and 3 s/div, respectively, the trend display is updated every second. If the data update rate and T/div are set to 10 s and 3 s/div, respectively, the trend display is updated every 10 s and the trend data is shown as a line graph at 10-s intervals. If T/div is set to 1 day, the data update interval of the trend is 1728 s regardless of the data update rate setting.

Note

- If the time axis is changed, the retrieval of trend waveform data restarts. The trend display up to that point is cleared and the trend starts from the right end.
- One division on the trend display corresponds to 50 rasters. For example, if T/div is set to 1 day, 1 raster is equal to 1728 s (= 1 day/50). In this case, the data update interval of the trend is 1728 s, and the data is displayed P-P compressed. For a description of rasters and P-P compression, see section 2.7.
7.5 Setting the Scale

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press ITEM to display the Trend Items menu.
 If the trend display is at the lower section of the screen on the split display, press SHIFT+ITEM (LOWER ITEM).
2. Press the Trend Scale soft key to display the Trend Scale menu.
7.5 Setting the Scale

Selecting the Target Trend to Be Scaled
1. Press the Trend Object soft key.
2. Press the cursor keys to select a value between T1 and T16.

Selecting Auto Scaling or Manual Scaling
3. Press the Scaling soft key to select Auto or Manual.

Setting the Upper Limit during Manual Scaling
4. Press the Upper Scale soft key.
5. Press the cursor keys to set the upper limit.

Setting the Lower Limit during Manual Scaling
6. Press the Lower Scale soft key.
7. Press the cursor keys to set the lower limit.

Setting the Scale
Set the upper and lower limits of the display frame when displaying the trend. You can select the scaling mode from below.

- **Auto**

 Set to auto scaling. The upper and lower limits on the screen display are automatically determined from the maximum and minimum values of the trend display data.

- **Manual**

 Set to manual scaling. The upper and lower limits can be set arbitrary as necessary.

Setting the Upper and Lower Limits for Manual Scaling
You can set the limits in the range of −9.999E+30 to 9.999E+30.

Explanation

Set the upper and lower limits to improve visibility of the trend. The limits can be set arbitrary as necessary.
7.6 Displaying Trends on Divided Windows

Procedure

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **FORM** to display the Trend Form menu.

 If the trend display is at the lower section of the screen on the split display, press **SHIFT+FORM (LOWER FORM)**.

2. Press the **Format** soft key to display the Format menu.

3. Press any of the keys from **Single** to **Quad** to select the number of windows.
The trends can be assigned to the divided windows.

- **Selecting the Number of Screen Divisions**
 Select the number of divisions of the screen from the choices below. This is the same as with the waveform display (section 6.6).
 - Single: No division
 - Dual: 2 divisions
 - Triad: 3 divisions
 - Quad: 4 divisions
 The number of displayed points in the vertical direction of one divided window varies depending on the number of divisions as follows:
 Single: 432 points, Dual: 216 points, Triad: 144 points, Quad: 108 points

- **Waveform Mapping**
 The trends that are turned ON (see section 7.2) are assigned in order according to the trend number (T1 to T16) to the divided windows. This corresponds to the “Auto” setting for the waveform display.
7.7 Selecting the Display Interpolation and Graticule and Turning ON/OFF the Scale Value and Waveform Label

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press FORM to display the Trend Form menu.
 If the trend display is at the lower section of the screen on the split display, press SHIFT + FORM (LOWER FORM).

2. Press the Display Setting soft key to display the Disp Setting menu.

 - Selecting Whether to Interpolate the Display
 3. Same as the procedure given in “Selecting Whether to Interpolate the Display” in section 6.7.

 - Changing the Graticule
 3. Same as the procedure given in “Changing the Graticule” in section 6.7.

 - Turning ON/OFF the Scale Value Display
 3. Same as the procedure given in “Turning ON/OFF the Scale Value Display” in section 6.8.

 - Turning ON/OFF the Waveform Label
 3. Same as the procedure given in “Turning ON/OFF the Waveform Label” in section 6.8.
7.7 Selecting the Display Interpolation and Graticule and Turning ON/OFF the Scale Value and Waveform Label

- **Selecting Whether to Interpolate the Display**
 Same as the explanation given in “Selecting Whether to Interpolate the Display” in section 6.7.

- **Changing the Graticule**
 Same as the explanation given in “Changing the Graticule” in section 6.7.

- **Turning ON/OFF the Scale Value Display**
 Same as the explanation given in “Turning ON/OFF the Scale Value Display” in section 6.8.

- **Turning ON/OFF the Label Display**
 Same as the explanation given in “Turning ON/OFF the Label Display” in section 6.8.

Note

The settings in this section are common with the waveform display (see chapter 6). Changing these settings in the trend display also changes the waveform display settings. For example, if you turn the scale value display OFF in the trend display, the scale value display in the waveform display is also turned OFF.
7.8 Restarting the Trend

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press FORM to display the Trend Form menu.
 If the trend display is at the lower section of the screen on the split display, press SHIFT+FORM (LOWER FORM).

2. Press the Clear Trend Exec soft key to restart the trend.

 Explanation

 When the trend is restarted, the trend up to that point is cleared.

 In addition to pressing the Clear Trend Exec soft key, the following operations cause the trend to be restarted.

 • Changing the trend display target
 • Changing the time axis (horizontal axis) setting of the trend.
7.9 Cursor Measurement

Procedure

1. Press **SHIFT+MEASURE (CURSOR)** to display the Cursor menu. For split display of Wave+Trend or Bar+Trend, proceed to step 3. For all other displays, proceed to step 3.

2. Press the **Trend Cursor Setting** soft key to display the Cursor menu for the trend display.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
7.9 Cursor Measurement

- Turning ON/OFF Cursor Measurement
 3. Press the Trend Cursor soft key to select ON or OFF.
 If ON is selected, the result of the cursor measurement is displayed.

- Selecting the Target Trend for Cursor Measurement
 - Selecting the Target Trend for Cursor +
 4. Press the TrendC1 Trace soft key. A box used to select the target trend appears.
 5. Press the cursor keys to select a value between T1 and T16.
 6. Press SET to confirm the new target trend.

 - Selecting the Target Trend for Cursor x
 4. Press the TrendC2 Trace soft key. A box used to select the target trend appears.
 5. Press the cursor keys to select a value between T1 and T16.
 6. Press SET to confirm the new target trend.

- Moving the Cursors
 7. Press the Trend C1+/Trend C2 x soft key to set the cursor target to Trend C1 +, Trend C2 x, or both Trend C1 + and Trend C2 x.
 - If you select Trend C1 +, the position of cursor + can be moved.
 - If you select Trend C2 x, the position of cursor x can be moved.
 - If you select both Trend C1 + and Trend C2 x, the two cursors can be moved without changing the spacing between the two. The value of the digit being specified by Trend C1 + changes.
 8. Press the cursor keys to move the cursor.
7.9 Cursor Measurement

Explanation

- **ON/OFF**
 A cursor can be placed on the displayed trend to measure and display the value at any point. It can be used to measure the data on the vertical axis (Y-axis) and horizontal axis (X-axis) of various sections of the trend.
 - **ON**: Performs cursor measurement.
 - **OFF**: Does not perform cursor measurement.

- **Item under Measurement**
 Select the target trend for the cursor measurement from T1 to T16.

- **Moving the Cursor**
 - Cursors move on the selected trend.
 - Specify the number of points from the left end of the screen to move the cursor with the left and right ends of the screen assumed to be point 0 and 1001, respectively.
 - The cursors move along the data points displayed on the screen one point at a time.

- **Measurement Item**
 - **Y+**: Vertical value of cursor + (Y-axis value)
 - **Yx**: Vertical value of cursor x (Y-axis value)
 - **\(\Delta Y \)**: The difference between the Y-axis values of cursor + and cursor x
 - **X+**: X-axis value of cursor + from the left end of the screen
 Indicates the relative time of cursor + from the left end of the screen with the left end of the screen taken to be 0 s.
 - **Xx**: X-axis value of cursor x from the left end of the screen
 Indicates the relative time of cursor x from the left end of the screen with the left end taken to be 0 s.
 - **\(\Delta X \)**: The difference between the X-axis values of cursor + and cursor x
 - **D+**: Date and time at the cursor + position
 Indicates the date and time (year/month/date hour:minute:second) of measurement.
 - **Dx**: Date and time at the cursor x position
 Indicates the date and time (year/month/date hour:minute:second) of measurement.

Note
- if immeasurable data exists, *** is displayed in the measured value display area.
- \(\Delta Y \) is measured even if the unit is different. The result has no unit in this case.
Chapter 8 Storing and Recalling Data and Saving the Stored Data

8.1 Setting the Store Mode

Procedure

To set or execute the storage operation, set the measurement mode to normal measurement mode or wide bandwidth harmonic measurement mode.* There are limitations on the setting and execution of the storage operation in measurement modes other than normal measurement mode.

* Can be set on models with the advanced computation (/G6) option.

1. Press SHIFT+STORE (STORE SET) to display the Store Set menu.
2. Press the Mode soft key to select Store.
3. Press the Store Setting soft key to display the Store Setting menu.
4. Press the Mode soft key to display the Mode menu.
5. Press any soft key from Manual to Integ Sync to select the store mode.

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
To store data, parameters such as the store mode, the store count, the store interval, and the store reservation time must be specified before executing the operation. This section explains the store mode. For the procedure on how to set the store count, the store interval, and the store reservation time, see section 8.2; for the procedure on how to start the storage operation, see section 8.4.

Limitations on the Storage Function by Measurement Modes
There are limitations on the setting and execution of the storage operation in measurement modes other than normal measurement mode.

- Normal Measurement Mode
 There are no limitations on the storage function.

- Wide Bandwidth Harmonic Measurement Mode*
 The store mode cannot be set to integration synchronization mode (Integ Sync), because the integration function is not available. If you switch from normal measurement mode to wide bandwidth harmonic measurement mode with the store mode set to integration synchronization mode, the store mode is set to manual.
 If Store Item is set to Wave, “NAN” is stored for the waveform data. This is because the waveform display function is not available.

- Measurement Modes in Which the Storage Function Cannot Be Used
 - IEC harmonic measurement mode
 - Waveform computation mode
 - FFT mode
 - Voltage fluctuation and flicker measurement mode
 - Cycle-by-cycle measurement mode

Store Mode
You can select the timing used to start or end the storage operation from the choices below.

- Manual
 This is the manual mode. When you press STORE, the numeric data or waveform display data can be stored at the specified store interval for the specified store counts.

- Real Time
 This is the real-time mode. When you press STORE, the numeric data or waveform display data can be stored from the specified reservation time for starting the storage operation at the specified store interval for the specified store counts (or until the reservation time for ending the storage operation).

- Integ Sync
 - This is the integration synchronization mode. When you press STORE, the numeric data or waveform display data can be stored when the integration starts at the specified store interval for the specified store counts (or until the integration is stopped).
 - By setting the time of the integration timer (see section 5.11 or 5.12) to an integer multiple of the store interval, the integrated values at integration start and integration stop that are repeated according to the time setting of the integration timer can be stored.
8.2 Setting the Numeric Data and Waveform Display Data to Be Stored

Procedure

1. Press **SHIFT+STORE(STORE SET)** to display the Store Set menu.
2. Press the Mode soft key to select Store.
3. Press the **Store Setting** soft key to display the Store Setting menu.

• Selecting the Item to Be Stored
4. Press the **Store Item** soft key to display the Store Item menu.
5. Press any soft key from **Numeric** to **Numeric+Wave** to select the stored item.
 - If you select Numeric, the stored item is the numeric data. Proceed to “Selecting the Numeric Data to Be Stored” on the next page.
 - If you select Wave, the stored item is the waveform display data. Proceed to “Selecting the Waveform Data to Be Stored” on page 8-5.
 - If you select Numeric+Wave, the stored item is both the numeric data and the waveform display data. Proceed to “Selecting the Numeric Data and Waveform Data to Be Stored” on page 8-5.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press **SHIFT+STORE(STORE SET)** to display the Store Set menu.
2. Press the Mode soft key to select Store.
3. Press the **Store Setting** soft key to display the Store Setting menu.

4. Press the **Store Item** soft key to display the Store Item menu.
5. Press any soft key from **Numeric** to **Numeric+Wave** to select the stored item.
 - If you select Numeric, the stored item is the numeric data. Proceed to “Selecting the Numeric Data to Be Stored” on the next page.
 - If you select Wave, the stored item is the waveform display data. Proceed to “Selecting the Waveform Data to Be Stored” on page 8-5.
 - If you select Numeric+Wave, the stored item is both the numeric data and the waveform display data. Proceed to “Selecting the Numeric Data and Waveform Data to Be Stored” on page 8-5.
8.2 Setting the Numeric Data and Waveform Display Data to Be Stored

- **Selecting the Numeric Data to Be Stored**
 (This operation is valid if the stored item was set to Numeric or Numeric+Wave in step 5.)
 6. Press the **List Item** soft key to display the List Item dialog box.

- **Selecting the Items at Once**
 7. Press the **cursor keys** to select All ON.
 8. Press **SET**. The buttons to the left of all the elements and measurement functions are highlighted indicating that all items will be stored.

- **Deselecting All the Items at Once**
 7. Press the **cursor keys** to select All OFF.
 8. Press **SET**. The highlighting of the buttons to the left of all the elements and measurement functions are cleared indicating that all items will not be stored.

- **Selecting Only the Items That Are Preset**
 7. Press the **cursor keys** to select Preset1 or Preset2.
 8. Press **SET**. The buttons to the left of all the elements and measurement functions that are specified in Preset1 or Preset2 are highlighted indicating that the items will be stored.

- **Setting the Items One at a Time**
 7. Press the **cursor keys** to select the element or measurement function that you wish to specify.
 8. Press **SET**. When the button to the left of the selected element or measurement function is highlighted, the numeric data of the measurement function of the element will be stored. When the highlighting of the button is cleared, the numeric data of the measurement function of the element will not be stored.
8.2 Setting the Numeric Data and Waveform Display Data to Be Stored

• Selecting the Waveform Display Data to Be Stored
 (This operation is valid if the stored item was set to Wave or Numeric+Wave in step 5.)
 6. Press the Wave Trace soft key to display the Wave Trace dialog box.

• Selecting the Items at Once
 7. Press the cursor keys to select All ON.
 8. Press SET. The buttons to the left of all the signals are highlighted indicating that all items will be stored.

• Deselecting All the Items at Once
 7. Press the cursor keys to select All OFF.
 8. Press SET. The highlighting of the buttons to the left of all the signals are cleared indicating that all items will not be stored.

• Setting the Items One at a Time
 7. Press the cursor keys to select the input signal you wish to set.
 8. Press SET. When the button to the left of the selected input signal is highlighted, the input signal will be stored. If the highlighting of the button is cleared, the input signal will not be stored.

• Selecting the Numeric Data and Waveform Data to Be Stored
 (This operation is valid if the stored item was set to Numeric+Wave in step 5.)
 6. Press the List Item & Wave Trace soft key to display the List Item & Wave Trace dialog box.
 7. Select the numeric data to be stored according to steps 7 and 8 in “Selecting the Numeric Data to Be Stored” on page 8-4.
 8. Select the waveform data to be stored according to steps 7 and 8 in “Setting the Items One at a Time” under “Selecting the Waveform Data to Be Stored” described above.
8.2 Setting the Numeric Data and Waveform Display Data to Be Stored

Explanation

- **Selecting the Items to Be Stored**
 Select the item to be stored from the following:
 - **Numeric**
 Numerical data are stored.
 - **Wave**
 Waveform display data are stored.
 - **Numeric+Wave**
 Numeric data and waveform display data are stored.

- **Selecting the Numeric Data to Be Stored**
 Select the items for storing the numeric data.
 - Installed elements and wiring units are applicable for the selection.
 - The items to be stored can be selected from the items indicated in “Measurement Function Types during Normal Measurement” (see section 2.2), “Measurement Function Types for Motor Evaluation Function (Motor Version)” (see the Expansion Function User’s Manual IM760301-51E), and “Measurement Function Types for Harmonic Measurement (Option)” (see the Expansion Function User’s Manual IM760301-51E).

- **Selecting the Waveform Display Data to Be Stored**
 Select the items for storing the waveform display data.
 - Only the input signals of the installed elements are applicable for the selection.
 - For models with the motor evaluation function (motor version), the input signals of Speed and Torque are also selectable items.

Note

- There are limitations on the setting and execution of the storage operation in measurement modes other than normal measurement mode. For details, see section 8.1.
- For details on the wiring units expressed as ΣA and ΣB, see section 4.1, “Selecting the Wiring System.”
- [--------] (no data) is stored in places where there is no numeric data.
- If there are no integrated values because integration is not performed, [--------] (no data) is stored. [--------] (no data) is also stored in places where there is no integration time.
- The maximum order for which the harmonic data is saved is the maximum harmonic order to be measured that is specified in the harmonic measurement (option) menu. [--------] (no data) is stored for harmonic orders without data.
- To store waveform display data, set the display mode to Wave, Numeric+Wave, Wave+Bar, or Wave+Trend and display the waveform on the screen. If the display mode is not set to one of these modes, “NAN” is stored for the waveform data.
8.3 Setting the Store Count, Store Interval, Store Reservation Time, and Alert Indication of Internal Memory Initialization

Procedure

1. Press **SHIFT+STORE(STORE SET)** to display the Store Set menu.
2. Press the **Mode** soft key to select Store.
3. Press the **Store Setting** soft key to display the Store Setting menu.

- **Setting the Store Count**
 4. Press the **cursor keys** to set the store count.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the **cursor keys**” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
• Checking the Maximum Store Count and Optimizing the Store Count
5. Press the **Optimize Store Count** soft key. The Optimize Store Count dialog box appears, and the maximum store count is displayed.

 If the store count specified in step 4 is greater than the maximum store count, proceed to step 6. Otherwise, proceed to step 12.
6. Press the **cursor keys** to select Maximum Store Count.
7. Press **SET** to display the entry box.
8. Press the **cursor keys** to set the store count to a value less than or equal to the maximum store count.
9. Press **SET** or **ESC** to close the box.
10. Press the **cursor keys** to select **SET**.
11. Press **SET**.
12. Press **ESC** to close the entry box.

• Setting the Store Interval
4. Press the **Interval Setting** soft key to display the Interval Setting dialog box.
5. Press the **cursor keys** to select the hour, minute, or second box.
6. Press **SET** to display the entry box.
7. Press the **cursor keys** to set the hour, minute, or second that you selected in step 5.

 For the procedures on how to enter values using the cursor keys, see section 3.14, "Entering Values and Strings."
8. Press **SET** or **ESC** to close the box.
9. Repeat steps 5 to 8 to set the hour, minute, and second.
8.3 Setting the Store Count, Store Interval, Store Reservation Time, and Alert Indication of Internal Memory Initialization

- Setting the Store Reservation Time
 (This operation is possible when the store mode is set to Real Time in section 8.1)
 4. Press the Mode soft key to display the Mode menu.
 5. Press the Real Time soft key to select the real-time mode. The store reservation time menu appears.
 6. Press the Real Time Control soft key to display the Real Time Control dialog box.
 7. Press the cursor keys to select one of the reservation year, month, date, hour, minute, and second boxes for specifying when the storage operation will start (Store Start).
 8. Press SET to display the entry box.
 9. Press the cursor keys to set the year, month, date, hour, minute, or second that you selected in step 7.
 10. Press SET or ESC to close the box.
 11. Repeat steps 7 to 10 to set the year, month, date, hour, minute, and second.
 12. Press the cursor keys to select one of the reservation year, month, date, hour, minute, and second boxes for specifying when the storage operation will end (Store End).
 13. Repeat steps 8 to 11 to set the year, month, date, hour, minute, and second.

- Turning ON/OFF the Alert Indication for Internal Memory Initialization
 1. Press SHIFT+STORE(STORE SET) to display the Store Set menu.
 2. Press the Init Memory Alert Msg soft key to select ON or OFF.
To store data, parameters such as the store mode, the store count, the store interval, and the store reservation time must be specified before executing the operation. This section explains the store count, the store interval, and the store reservation time. For the procedure on how to set the store mode, see section 8.1; for the procedure on how to start the storage operation, see section 8.4.

Setting the Store Count
- Set the value in the range of 1 to 999999.
- If the data being stored exceeds the internal memory size (approx. 30 MB) of the store destination, the storage operation stops before reaching the specified store count.

Checking the Maximum Store Count and Optimizing the Store Count
From the numeric data and waveform display data that are to be stored as specified in section 8.2, the maximum count that can be stored in the internal memory is calculated and displayed. If you change the maximum store count that is displayed, the actual store count is also changed to that value.
- You can change the store count in the range of 1 to the maximum store count that is calculated.

Setting the Store Interval
Set the interval at which the data is to be stored.
- The time in units of hour:minute:second can be set in the following range. If the interval is set to 00:00:00, the data is stored in sync with the updating of the numeric data or waveform display data.
 - 00:00:00 to 99:59:59
- By setting the time of the integration timer (see section 5.11 or 5.12) to an integer multiple of the store interval, the integrated values at integration start and integration stop that are repeated according to the time setting of the integration timer can be stored.

Setting the Store Reservation Time
- The reservation time is set in units of year:month:date, hour:minute:second.
 - Set the year, month and day.
 - Set the hour:minute:second in the following range.
 - 00:00:00 to 23:59:59
- Make sure the reservation time for stopping the storage operation is after the reservation time for starting the storage operation.

Turning ON/OFF the Alert Indication for Internal Memory Initialization
You can select whether to display a message when the internal memory is about to be initialized.
- ON: Displays the alert message.
- OFF: Initializes the memory without displaying the alert message.

Note
- The reservation time allows up to 31 days to be specified for February. If an erroneous date is specified, an error message is displayed at the time of execution of the storage operation (section 8.4). Reset the reservation time in this case.
- Leap years are recognized at the time of execution of the storage operation.
8.4 Storing Data

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

If you are storing data for the first time after turning the power switch ON, start from step 1. If you stored the data before and the data is stored in the internal memory, proceed to step 6 to clear the internal memory.

To set or execute the storage operation, set the measurement mode to normal measurement mode or wide bandwidth harmonic measurement mode.*1 There are limitations on the setting and execution of the storage operation in measurement modes other than normal measurement mode.

To store waveform display data, set the display mode to Wave, Numeric+Wave, Wave+Trend, or Wave+Bar*2 and display the waveform on the screen. For the setup procedure, see section 6.1.

*1 Displayed only to products with the advanced computation (/G6) option.
*2 Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.

• Starting the Storage Operation

1. Press SHIFT+STORE(STORE SET) to display the Store Set menu.
2. Press the Mode soft key to select Store.
3. Press the Store to soft key to select Memory.
4. Press STORE. The storage operation starts according to the following conditions depending on the store mode (see section 8.1).
 • During manual mode
 Starts the storage operation. When STORE is pressed, the first storage operation is executed. The STORE key illuminates, and “Store:Start” is displayed in the upper left corner of the screen.
 • During real-time mode
 The WT3000 enters store ready state. The STORE key blinks, and “Store:Ready” is displayed in the upper left corner of the screen. When the reservation time for starting the storage operation is reached, the first storage operation starts. The STORE key illuminates, and “Store:Start” is displayed in the upper left corner of the screen.
 • During integration synchronization mode
 The WT3000 enters store ready state. The STORE key blinks, and “Store:Ready” is displayed in the upper left corner of the screen. When integration starts, the first storage operation starts. The STORE key illuminates, and “Store:Start” is displayed in the upper left corner of the screen.
• Stopping the Storage Operation

5. If the storage operation is in progress, pressing STORE again stops the operation. The STORE key turns OFF.

• Automatically Stopping the Storage Operation

5. The storage operation stops automatically according to the following conditions depending on the store mode. The STORE key turns OFF.
 - During manual mode
 The storage operation stops when the specified store count of data is stored or when the data is stored up to the internal memory size (approx. 30 MB). “Store:Stop” is displayed in the upper left corner of the screen.
 - During real-time mode
 The storage operation stops when the specified store count of data is stored, when the reservation time for stopping the storage operation is reached, or when the data is stored up to the internal memory size. “Store:Stop” is displayed in the upper left corner of the screen.
 - During integration synchronization mode
 The storage operation stops when the specified store count of data is stored, when integration stops, or when the data is stored up to the internal memory size. “Store:Stop” is displayed in the upper left corner of the screen.

• Initializing (Clearing) the Internal Memory

The procedure to clear the internal memory varies depending on the store mode. This section describes the procedures when the store mode is store. For the procedures when the store mode is recall, see section 8.6.

6. While the storage operation is stopped, press STORE again.
 If the alert indication for internal memory initialization (section 8.3) is ON, the Alert dialog box appears. Proceed to step 7. If the indication is OFF, the data in the internal memory is cleared without displaying the Alert dialog box.

7. Press the cursor keys to select OK or Cancel.

8. Select OK and press SET to clear the data in the internal memory. Select Cancel and press SET to not clear the data in the internal memory.
To store data, parameters such as the store mode, the store count, the store interval, and the store reservation time must be specified before executing the operation. This section explains the start and stop operations of storage. For the procedure on how to set the store mode, see section 8.1; for the procedure on how to set the store count, the store interval, and the store reservation time, see section 8.2.

• **Display Related to Storage**
 When the storage operation is in the start or stop state, the storage state and store count are displayed at the upper left of the screen.

<table>
<thead>
<tr>
<th>Storage state</th>
<th>Store count</th>
</tr>
</thead>
<tbody>
<tr>
<td>store</td>
<td>1</td>
</tr>
</tbody>
</table>

• **Starting the Storage Operation**
 - The storage operation starts according to various conditions depending on the store mode (see section 8.1). For details, see the procedural explanation.
 - The storage operation can be executed only when the internal memory is cleared.
 - If you are performing the first storage operation after turning ON the power switch, there is no need to clear the internal memory.

• **Stopping the Storage Operation**
 - The storage operation can be forcibly stopped using the STORE key.
 - The storage operation stops automatically according to various conditions depending on the store mode. For details, see the procedural explanation.

• **Initializing (Clearing) the Internal Memory**
 To start the storage operation again after stopping the operation, the internal memory must be cleared.

• **Retaining the Stored Data**
 The data stored to the internal memory cannot be retained by the internal lithium battery. The data in the internal memory is lost when the power to the WT3000 is turned OFF. To retain the data, save the data to the storage medium before turning off the power.

Note
- [------] (no data) is stored in places where there is no numeric data.
- If there are no integrated values because integration is not performed, [------] (no data) is stored. [------] (no data) is also stored in places where there is no integration time.
- The maximum order for which the harmonic data is saved is the maximum harmonic order to be measured that is specified in the harmonic measurement (option) menu. [------] (no data) is stored for harmonic orders without data.
- To store waveform display data, set the display mode to Wave, Numeric+Wave, Wave+Bar, or Wave+Trend and display the waveform on the screen. If the display mode is not set to one of these modes, “NAN” is stored for the waveform data.
- While the storage operation is in progress, you cannot change the PLL source, the equation for distortion, scaling, averaging, filter, integration mode, integration timer, or the store interval. In addition, you cannot change the auto print settings or execute auto print.
- If you hold the display by pressing HOLD while the storage operation is in progress, the value that is present when HOLD is pressed is stored.
- If the store interval is 00:00:00 and you hold the display by pressing HOLD, the storage operation stops.
8.5 Saving the Stored Data

CAUTION
Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on it.

Procedure

1. Press **SHIFT+STORE(STORE SET)** to display the Store Set menu.
2. Press the **Mode** soft key to select Store.
3. Press the **Store to** soft key to select Memory or File.
 - If you selected Memory, proceed to “When Saving Data That Has Already Been Stored” on the next page.
 - If you selected File, proceed to “When Saving Data through a Store-and-Save Operation Sequence” on page 8-16.
When Saving Data That Has Already Been Stored

4. Press the Memory to File soft key to display the Memory to File dialog box.

- Selecting the Data Type for Saving the Data
5. Press the Data Type soft key to select ASCII or Float.

- Selecting the Storage Medium
6. Press the File List soft key to display the File List dialog box.
7. Press the cursor keys to select the storage medium (indicated by []).
8. Press SET to confirm the storage medium.

- Selecting the Save Destination Directory
(Perform this operation when directories are present on the medium.)
9. Press the cursor keys to select the save destination directory (indicated by < >).
10. Press SET to confirm the directory.
 - The selected storage medium/directory is displayed in “Path=......” located above and to the left of the File List dialog box.
 - Select <.. > and press SET to return to a higher level directory.

- Setting the File Name and Comment
11. Press the File Name soft key to display the Save dialog box.
12. Press the cursor keys to select Auto Naming.
13. Press SET to select ON or OFF.
14. Press the cursor keys to select File Name.
15. Press SET to display the keyboard.
16. Use the keyboard to set the file name.
 - For keyboard operations, see section 3.14, “Entering Values and Strings.”
17. Enter the Comment in a similar fashion.
18. Press ESC to close the Save dialog box.
Executing the Save Operation

19. Press the **Memory to File Exec** soft key. The stored data is saved to the directory indicated by Path=....... At the same time, the Memory to File Exec soft key changes to an **Abort** soft key.

Aborting the Save Operation

20. Press the **Abort** soft key to abort the save operation. At the same time, the **Abort** soft key changes to a *Memory to File Exec* soft key.

Specifying the File to Be Displayed in the File List Dialog Box

11. Press the **Filter** soft key to select **Item** or **All**.

Viewing the Properties

11. On the File List dialog box, press the **cursor keys** to select the file.
12. Press the **Property** soft key to display the file property window.
13. Press **ESC** to close the file property window.
When Saving Data through a Store-and-Save Operation Sequence

4. Press the File setting soft key to display the File setting menu.

- Selecting the Data Type for Saving the Data
 5. The procedure is the same as step 5 under “Selecting the Data Type for Saving the Data” on page 8-15.

- Selecting the Storage Medium
 6. The procedure is the same as steps 6 to 8 under “Selecting the Storage Medium” on page 8-15.

- Selecting the Save Destination Directory
 7. The procedure is the same as steps 9 and 10 under “Selecting the Save Destination Directory” on page 8-15.

- Setting the File Name and Comment
 8. The procedure is the same as steps 11 to 18 under “Setting the File Name and Comment” on page 8-15.

- Starting the Storage Operation
 9. Press STORE. The storage operation starts (see section 8.4) according to various conditions depending on the store mode (see section 8.1).

- Stopping the Store Operation and Saving the Data
 10. If the storage operation is in progress, pressing STORE again stops the operation. Then, the stored data is saved to the directory indicated by Path=......

- Automatically Stopping the Store Operation and Saving the Data
 11. The storage operation stops (see section 8.4) automatically according to various conditions depending on the store mode. Then, the stored data is saved to the directory indicated by Path=......

- Specifying the File to Be Displayed in the File List Dialog Box
 The procedure is the same as step 11 under “Specifying the File to Be Displayed in the File List Dialog Box” on page 8-16.

- Viewing the Properties
 The procedure is the same as steps 11 to 13 under “Viewing Properties” on page 8-16.

Note

- If the storage medium at the save destination does not exist when saving the stored data, an error message is displayed and the save operation is aborted. Since the data is stored in the internal memory in this case, you can save the data stored to the memory by selecting “Memory” according to step 3 on page 8-13 and then carrying out the steps on pages 8-14 and 8-15.
- Because file operation cannot be carried out when integration is in progress, do not execute the store and save operation sequence in integration synchronization mode. Saving of stored data is also not possible when integration is in progress.
8.5 Saving the Stored Data

Explanation

- **Selecting the Data Type**
 Select the data type from below. The extension is automatically added.
 - **ASCII**
 - Numerical data or waveform display data is saved in ASCII format.
 - The file can be used on your PC for analysis.
 - The file cannot be loaded into the WT3000.
 - **Float**
 - Numeric data or waveform display data is saved in 32-bit floating format.
 - The file cannot be loaded into the WT3000.

- **Extension and Data Size of the Numeric Data**

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Extension</th>
<th>Data Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>.CSV</td>
<td>Approx. 5 K (condition: number of elements 1, store item Preset1, store count 10)</td>
</tr>
<tr>
<td>Float</td>
<td>.WTD</td>
<td>When integration is not performed: Approx. (8 K + (4×Dn + 16×number of storage operations))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When integration is performed: Approx. (4K + (8×Dn + 16 + 16×Tt)×number of storage operations)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dn: Number of numerical data to be stored</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Number of measurement functions×(number of elements + number of wiring units))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tt: Number of integration time to be stored</td>
</tr>
</tbody>
</table>

- **Extension and Data Size of the Waveform Display Data File**

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Extension</th>
<th>Data Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>.CSV</td>
<td>Approx. 115 K (condition: when there is one waveform to be stored, store count 10)</td>
</tr>
<tr>
<td>Float</td>
<td>.WTD</td>
<td>Approx. (4K + (8×1002×Tw + 16)×number of storage operations)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tw is the number of waveforms to be stored</td>
</tr>
</tbody>
</table>

- **Selecting the Medium and Directory**
 The save destination medium and directory are displayed in the File List dialog box.

Currently selected medium and directory

Directory

Save destination medium

Display Example of Storage Media

- [PC_Card]: PC card
- [USB2]: USB memory (option) with ID number 2
- [NetWork]: Network drive (option. see Expansion Function User's Manual IM760301-51E)
8.5 Saving the Stored Data

- **File Name and Comment**
 - A file name must be assigned. Comments are optional.
 - You cannot save data to a file name that already exists in the same directory (overwriting not allowed).

Number and Types of Characters That Can Be Used

<table>
<thead>
<tr>
<th>Item</th>
<th>Number of Characters</th>
<th>Characters That Can Be Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>1 to 8 characters</td>
<td>0-9, A-Z, %, _, () (parentheses), - (minus sign)</td>
</tr>
<tr>
<td>Comment</td>
<td>0 to 25 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
</tbody>
</table>

- **Auto Naming Function**
 When Auto Naming is turned ON, files with a four digit number from 0000 to 2499 are automatically created when saving the data. You can specify a common name (up to 4 characters, specified through File Name) that is placed before the number.

- **Initializing (Clearing) the Internal Memory**
 - The storage operation can be executed only when the internal memory is cleared.
 - If you are performing the first storage operation after turning ON the power switch, there is no need to clear the internal memory.

- **Specifying the File to Be Displayed in the File List Dialog Box**
 Specify the type of files to be displayed.
 - **Item**
 - Displays only the numerical data and waveform display data files in the selected directory.
 - **All**
 - Displays all the files in the selected directory.
8.5 Saving the Stored Data

- **Properties**
 Displays the following information about the selected file: filename.extension, the file size, the date the file was saved, the attribute, the comment, etc.

- **Note**
 - The following data is stored in the places where numerical data does not exist when saving the stored numerical data.
 - For ASCII files: Characters NAN, +INF, -INF, ERROR, or blank*1.
 - *1 Measurement functions that are displayed as blank such as the 0th (dc) and 1st order values of φU and φI.
 - For Float files: 0x7FC00000, 0x7F800000, 0xFF800000, or 0xFFFFFFFE.
 - The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.
 - Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.
 - Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, "..." is displayed at the end of the character string.
 - File names are not case-sensitive. Comments are case-sensitive. In addition, the following names cannot be used due to limitations of MS-DOS.
 - AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
 - The maximum number of files that can fit in one directory is 2500. If you need to save more than 2500 files, change the directory or move the existing files to another directory.
 - You can view the stored data saved in Float format (*.WTD) using the File Reader Software*2 on your PC and convert the data into a CSV file.
 - *2 The software program can be downloaded by accessing the Download and Support page from the following URL.
 - http://www.yokogawa.com/tm/
 - If you change the extension of the file such as on a PC, the file can no longer be loaded into the File Reader Software.
8.6 Recalling the Stored Data

Procedure

- **Recalling the Data**
 1. Press **SHIFT+STORE(STORE SET)** to display the Store Set menu.
 2. Press the **Mode** soft key to select Recall.
 3. Press the **cursor keys** and set the Recall No. (number of the data to be recalled). The corresponding data is displayed.

- **Initializing (Clearing) the Internal Memory**
 The procedure to clear the internal memory varies depending on the store mode. This section describes the procedures when the store mode is recall. For the procedures when the store mode is store, see section 8.4.
 4. Press the **Initialize Memory Exec** soft key.
 - If the alert indication for internal memory initialization (section 8.3) is ON, the Alert dialog box appears. Proceed to step 5. If the indication is OFF, the data in the internal memory is cleared without displaying the Alert dialog box.
 5. Press the **cursor keys** to select OK or Cancel.
 6. Select OK and press **SET** to clear the data in the internal memory. Select Cancel and press **SET** to not clear the data in the internal memory.
8.6 Recalling the Stored Data

Explanation

- **Recalling the Data**
 You can recall and display the stored numeric data or waveform display data.
 There is a one-to-one relationship between the store count number (see section 8.2) and the Recall No. If you wish to recall the first stored data, for example, set Recall No. to 1. The Recall No. and store count are also displayed at the upper left corner of the screen. For example, the information is displayed as “Recall 3/100.” In this example, the Recall No. is 3, and the store count is 100. If there is no stored data, the store count is 0.

Note

Only the data stored in the internal memory can be recalled.

- **Display Related to Recall**

<table>
<thead>
<tr>
<th>Recall No./store count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Data</td>
</tr>
<tr>
<td>Data stored in normal measurement mode</td>
</tr>
<tr>
<td>U_rms 1 103.2664 V</td>
</tr>
<tr>
<td>I_rms 1 0.553916 A</td>
</tr>
<tr>
<td>P 1 53.1890 W</td>
</tr>
<tr>
<td>λ 1 0.92986</td>
</tr>
</tbody>
</table>

Date/time of storage

- **Initializing (Clearing) the Internal Memory**
 To start the storage operation again, you must clear the internal memory.
Chapter 9 Saving and Loading Data

9.1 PC Card and USB Memory

PC Cards That Can Be Used
The WT3000 supports flash ATA cards (PC card TYPE II) and compact flash (using the PC card TYPE II adapter). For details, contact your nearest YOKOGAWA dealer.

Note
To use the PC card on the PC, use a PC that supports the PC card. Depending on the PC that you are using, the PC cards indicated above may not operate properly. Check it beforehand.

Inserting the PC Card
Insert the PC card into the PC card drive with the front side of the card facing right.

Note
Be sure to insert the PC card all the way in. If it isn’t, the WT3000 may not detect it correctly.

Ejecting the PC Card
Check that the PC card is not being accessed and press the eject button below the PC card slot.

* Normally, the eject button is retracted. To eject the PC card, press the eject button once to pop the button out and press it again.

CAUTION
- The WT3000 may malfunction if the PC card is inserted and ejected within 1-second time period.
- Do not remove the PC card or turn OFF the power while it is being accessed. If you do, the data on the PC card may be destroyed.
- An access icon is displayed at the upper left corner of the screen while the PC card is being accessed.

General Handling Precautions of PC Cards
For the general handling precautions of the PC card, read the instruction manual that came with the PC card.
USB PERIPHERAL Interface Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>USB type A connector (receptacle)</td>
</tr>
<tr>
<td>Electrical and mechanical specifications</td>
<td>Conforms to USB Rev.1.1</td>
</tr>
<tr>
<td>Data rate</td>
<td>12 Mbps maximum</td>
</tr>
<tr>
<td>Power supply</td>
<td>5 V, 500 mA* (per port)</td>
</tr>
<tr>
<td>Number of ports</td>
<td>2</td>
</tr>
<tr>
<td>* Devices whose maximum current consumption exceeds 100 mA cannot be connected simultaneously to the two ports.</td>
<td></td>
</tr>
</tbody>
</table>

Compatable USB Storage Devices

USB memories (USB Mass Storage Class) can be used on the WT3000.

Connecting the USB Memory

Connect the USB memory directly to the WT3000 without going through a USB hub. You can connect the USB memory regardless of whether the power switch on the WT3000 is ON or OFF (supports hot-plugging). When the power switch is ON, the USB memory is detected and enabled approximately six seconds after it is connected. An ID number (2 or greater) is automatically assigned to the detected USB memory.

Note

- Do not connect USB devices other than a USB keyboard or a USB memory to the USB PERIPHERAL connector.
- The WT3000 has two USB PERIPHERAL ports. However, USB devices whose maximum consumption current exceeds 100 mA cannot be connected simultaneously to the two ports.

General Handling Precautions of USB Memories

For the general handling precautions of the USB memory, read the instruction manual that comes with the memory.
9.2 Formatting the Storage Media

CAUTION

- Do not remove the storage medium or turn OFF the power when the access indicator or icon is blinking. Such acts can damage the storage medium or destroy the data on it.
- If the WT3000 fails to detect a formatted storage medium, reformat the storage medium on the WT3000. Note that all the data on the storage medium are cleared when the storage medium is formatted. Be sure to back up important data beforehand.

Procedure

1. Press **FILE** to display the File menu.
3. Press the **Function** soft key to display the Function menu.
9.2 Formatting the Storage Media

- **Selecting the Storage Medium to Be Formatted**
 4. Press the **Format** soft key. A storage media list is displayed in the File List dialog box.
 5. Press the **cursor keys** to select the storage medium to be formatted.
 - Net Work (drive) cannot be formatted.

- **Viewing the Storage Media Information**
 6. Press the **Media Info** soft key. The information about the storage medium that was selected in step 5 is displayed.

- **Selecting the Number of Partitions**
 7. Press the **Format** soft key to display the Format menu.
 8. Press the **cursor keys** to select 1 or 2.
 - A storage medium that is already partitioned can be selected and formatted as a separate storage media, but the separate storage media cannot be partitioned further.

- **Executing (OK)/Aborting (Cancel) the Format Operation**
 9. Press the **Format Exec** soft key. An Alert dialog box appears.
 10. Press the **cursor keys** to select OK or Cancel.
 11. Select OK and press **SET** to execute the format operation.
 Select Cancel and press **SET** to not carry out the format operation.
9.2 Formatting the Storage Media

Explanation

- **Storage Medium Information**
 Lists the information about the selected storage medium.
 - Media Name: Storage medium name.
 - Media Size: Total size.
 - Used Space: Size of the used area.
 - Vacant Space: Size of the free area.
 - Partition Size: Number of partitions.

- **Formatting the PC Card/USB Memory**
 The PC card or USB memory is formatted to FAT format.

- **Number of Partitions.**
 You can set partitions on the PC card. However, PC cards that are handled as removable disks cannot be partitioned. You can select 1 or 2 for the number of partitions.

 Note
 - Note that if you format a storage medium that has data stored on it, all of the stored data are cleared.
 - It takes a few seconds to format a PC card.

- **Selecting the Storage Medium to be Formatted**
 The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

Procedure

1. Press FILE to display the File menu.

 • **Selecting the Item to Be Saved**

2. Press the File Item soft key to display the File Item menu.
3. Press one of the soft keys from Setup to Numeric or Acquisition* to select the item to be saved.

 Select Acquisition to save the power spectrum waveform data in FFT mode.
 Select Numeric to save the measured data of cycle-by-cycle measurement mode.

 If you selected Setup, proceed to step 11 under “Executing/Aborting the Save Operation” on page 9-10.
 If you selected Wave, proceed to “Selecting the Waveform Display Data” on the next page.
 If you selected Numeric, proceed to “Selecting the Numeric Data” on page 9-8.
 If Acquisition is selected, proceed to “Selecting the Waveform Sampling Data” on page 9-9.

 * Displayed only to products with the advanced computation (/G6) option.
Selecting the Waveform Display Data

- Selecting the Type of Waveform Display Data to Be Saved
 4. Press the Data Type soft key to display the Data Type menu.
 5. Press any of the soft keys from Binary to Float soft key to select the data type.

- Selecting the Input Signals to Be Saved
 The input signal selection box appears only when you select Float in step 5. (When the data type is set to Binary or ASCII, the waveform that is displayed on the screen is saved.)
 6. Press the Save soft key to display the Save Menu.
 7. Press the Trace soft key to display the input signal selection box.
 8. Press the cursor keys to select any of the elements/wiring units starting with U1.
 9. Press SET to select the input signal to be saved.
Proceed to step 12 on page 9-10.
Selecting the Numeric Data

- Selecting the Type of Numeric Data to Be Saved (for Measurement Modes Other Than Cycle-by-Cycle)
 4. Press the Data Type soft key to select ASCII or Float.

Note
The data type is fixed to ASCII for the cycle-by-cycle measurement.

- Selecting the Numeric Data to Be Saved
 5. Press the List Item soft key to display the List Item dialog box.

- Selecting All Items at Once
 6. Press the cursor keys to select All ON.
 7. Press SET. The buttons to the left of all the elements and measurement functions are highlighted indicating that all items will be saved.

- Deselecting All Items at Once
 6. Press the cursor keys to select All OFF.
 7. Press SET. The highlighting of the buttons to the left of all the elements and measurement functions are cleared indicating that all items will not be saved.

- Selecting Only the Items That Are Preset (during Normal Measurement Only)
 6. Press the cursor keys to select Preset1 or Preset2.
 7. Press SET. The buttons to the left of all the elements and measurement functions that are specified in Preset1 or Preset 2 are highlighted indicating that the items will be saved.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

- **Setting the Items One at a Time**
 6. Press the cursor keys to select the element or measurement function that you wish to specify.
 7. Press SET. When the button to the left of the selected element or measurement function is highlighted, the numeric data of the measurement function of the element will be saved. When the highlighting of the button is cleared, the numeric data of the measurement function of the element will not be saved.

 Proceed to step 10 on page 9-10.

- **Selecting the Waveform Sampling Data**
 4. Press the Data Type soft key to display the Data Type menu.
 5. Press one of the keys from Binary to Float to select the data type.

- **Selecting the Input Signals to Be Saved**
 The input signal selection box appears only when you select Float in step 5. (When the data type is set to Binary or ASCII, the waveform that is displayed on the screen is saved.)
 6. Press the Save soft key to display the Save Menu menu.
 7. Press the Trace soft key to display the input signal selection box.
 8. Press the cursor keys to select any of the elements/wiring units starting with U1.
 9. Press SET to select the input signal to be saved.

 Proceed to step 12 on page 9-10.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

Executing/Aborting the Save Operation
10. Press ESC to close the List Item dialog box.
11. Press the Save soft key to display the Save Menu.
12. Press the File List soft key to display the File List dialog box.

- Selecting the Save Destination Medium
13. Press the cursor keys to select the storage medium (indicated by []).
14. Press SET to confirm the storage medium.

- Selecting the Save Destination Directory
(Perform this operation when directories are present on the medium.)
15. Press the cursor keys to select the save destination directory (indicated by < >).
16. Press SET to confirm the directory.

The selected medium/directory is displayed in “Path=......” located above and to the left of the File List dialog box.

- Setting the File Name and Comment
17. Press the File Name soft key to display the Save dialog box.
18. Press the cursor keys to select Auto Naming.
19. Press SET to select ON or OFF.
20. Press the cursor keys to select File Name.
21. Press SET to display the keyboard.
22. Use the keyboard to set the file name.
 For keyboard operations, see section 3.14, “Entering Values and Strings.”
23. Enter the Comment in a similar fashion.
24. Press ESC to close the Save dialog box.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

- **Executing the Save Operation**
 25. Press the **Save Exec** soft key. The data is saved to the directory indicated by Path=...... At the same time, the Save Exec soft key changes to the Abort soft key.

- **Aborting the Save Operation**
 26. Press the **Abort** soft key to abort the save operation. At the same time, the Abort soft key changes to the Save Exec soft key.

- **Specifying the File to Be Displayed in the File List Dialog Box**
 The procedure is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- **Viewing the Properties**
 The procedure is the same as that given in “Viewing the Properties” in section 9.6.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

Explanation

CAUTION

Do not remove the storage medium (disk) or turn OFF the power when the access indicator or \[\text{on} \] is blinking. Doing so can damage the storage medium or destroy the data on the medium.

Setup parameters, waveform display data, numeric data, and waveform sampling data can be saved.

- **Limitation on the Data Save Function by Measurement Modes**
 There are limitations on the data save function depending on the measurement mode as follows:

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
<th>Voltage Fluctuation and Flicker</th>
<th>Cycle by Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup parameters (Setup)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Waveform data (Wave)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes,(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Numeric data (Numeric)(^2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Waveform sampling data (Acquisition)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes: Can be saved.
No: Cannot be saved.

\(^1\) FFT waveforms are saved as waveform sampling data (Acquisition).
\(^2\) If an item that is not measured or computed in the respective measurement mode is selected, NAN data is saved.

- **Saving Setup Parameters**
 Select Setup from the File Item menu to save setup parameters.

- **Setup Parameters That Are Saved**
 The setup parameters of each key existing at the time of the save operation can be saved. However, setup parameters such as the date, time and communications are not saved.

- **Data Size**
 The data size of a single set of setup parameters is approximately 20 KB.

- **Extension**
 The .SET extension is automatically added to the file name.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

- **Saving the Waveform Display Data**
 Select Wave from the File Item menu to save waveform display data.

- **Relationship between the Waveform Display Data That Can Be Saved and Measurement Modes**
 There are limitations on waveform display data that can be saved depending on the measurement mode as indicated below: Set the item to be saved to waveform sampling data (Acquisition) for FFT waveforms.

<table>
<thead>
<tr>
<th>Waveform Display Data</th>
<th>Normal Measurement</th>
<th>Waveform Computation</th>
<th>FFT<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>U2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>U3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>U4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Speed<sup>1</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Torque<sup>1</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Math1<sup>2</sup></td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Math2<sup>2</sup></td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ Applicable only to products with the motor evaluation function (motor version).
² Applicable only to products with the advanced computation (/G6 option).

- **Selecting the Data Type**
 Select the data type from below. The extension is automatically added.
 - **Binary**
 - The following two files are created in the directory.
 - Waveform display data file (.wvf)
 - ASCII header file (.hdr)
 - Waveform display data is saved in binary format.
 - For details on the ASCII header file, see appendix 3.
 - Either file cannot be loaded into the WT3000.
 - **ASCII**
 - Saved in ASCII format.
 - The file can be used on your PC for analysis.
 - The file cannot be loaded into the WT3000.
 - **Float**
 - Saved in 32-bit floating format.
 - The file cannot be loaded into the WT3000.

- **Note**
 The waveform display data that is saved on the WT3000 is not the sampled data acquired at the sample rate (approximately 200 kS/s) of the WT3000. The waveform display data is waveform sampling data that has been P-P compressed (see the note in section 2.7) to a set of 1002 data points for displaying the waveform on the screen. Waveform sampling data can be saved in waveform computation mode or FFT mode on models with the advanced computation (/G6 option).
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

- **Extension and Data Size**

 - During normal measurement

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Extension</th>
<th>Data Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>.WVF</td>
<td>Approx. (8K + 4 × 1002 × Tw) where Tw is the number of displayed waveforms</td>
</tr>
<tr>
<td></td>
<td>.HDR</td>
<td>Approx. 1 K (condition: when there is one displayed waveform)</td>
</tr>
<tr>
<td>ASCII</td>
<td>.CSV</td>
<td>Approx. 15 K (condition: when there is one displayed waveform)</td>
</tr>
<tr>
<td>Float</td>
<td>.FLD</td>
<td>4 × 1002</td>
</tr>
</tbody>
</table>

- **Selecting the Waveform**

 - When the data type is set to Binary or ASCII, the waveform that is displayed on the screen is saved.
 - When the data type is Float, the waveform of the input signal selected from the following is saved.
 - Only the input signals of the installed elements are applicable for the selection.
 - For models with the motor evaluation function (motor version), the input signals of Speed and Torque are also selectable items.

- **Saving the Numeric Data**

 Select Numeric from the File Item menu to save numerical data.

- **Selecting the Data Type**

 Select the data type from below. The extension is automatically added. The data type is fixed to ASCII for the cycle-by-cycle measurement.

 - ASCII
 - Saved in ASCII format.
 - The file can be used on your PC for analysis.
 - The file cannot be loaded into the WT3000.
 - Float
 - Saved in 32-bit floating format.
 - The file cannot be loaded into the WT3000.

- **Extension and Data Size (Normal Measurement Example)**

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Extension</th>
<th>Data Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>.CSV</td>
<td>Approx. 2 K (condition: number of elements 1, saved item Preset1)</td>
</tr>
<tr>
<td>Float</td>
<td>.WTD</td>
<td>When integration is not performed Approx. (8K + 4 × Dn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When integration is performed Approx. (8K + (4 × Dn + 16 × Ti))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dn: Number of numerical data to be saved (Number of measurement functions × (number of elements + number of wiring units))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ti: Number of integration time to be saved</td>
</tr>
</tbody>
</table>
• Selecting the Numeric Data
Select the numeric data items that are to be saved.
• Installed elements and wiring units are applicable for the selection.
• Measurement functions can be selected as follows:
 For measurement modes other than cycle-by-cycle measurement
 • Measurement functions of normal measurement (see section 2.2)
 • Measurement functions of the motor evaluation function (motor version)*
 • Measurement functions of harmonic measurement (option)*
 For cycle-by-cycle measurement mode
 • Measurement functions of cycle-by-cycle measurement*
 * See the Expansion Function User’s Manual IM760301-51E.
• The following data is saved in the places where numeric data does not exist when saving the numeric data.
 • For ASCII files: Characters NAN, +INF, -INF, ERROR, or blank*1.
 *1 Measurement functions that are displayed as blank such as the 0th (dc) and 1st order values of \(\phi_U \) and \(\phi_I \).
 • For Float files: 0x7FC00000, 0x7F800000, 0xFF800000, or 0xFFFFFFFE.
• When saving the cycle-by-cycle measurement data, information indicating whether peak over-range occurred during the measurement is recorded to the right of the voltage (U), current (I), speed, and torque data values using a number between 0 and 7. There are two methods for detecting peak over-range: detection by data and detection by hardware. The peak over-range information that is recorded is a combination of these detection results. See below.

<table>
<thead>
<tr>
<th>Peak over-range detection by hardware</th>
<th>Did not occur</th>
<th>Occurred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak over-range data did not occur</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Positive peak over-range data occurred</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Negative peak over-range data occurred</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Positive and negative peak over-range data occurred</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Note
If any hardware peak over-range is detected during the measurement of all cycles, a number between 4 to 7 is recorded for the data of all cycles of that input signal.

• Saving the Waveform Sampling Data
Select Acquisition from the File Item menu to save waveform sampling data.*
 * Data acquired at the WT3000’s sample rate (200 kS/s).
Relationship between the Waveform Sampling Data That Can Be Saved and Measurement Modes

There are limitations on waveform sampling data that can be saved depending on the measurement mode as indicated below:

<table>
<thead>
<tr>
<th>Waveform Display Data</th>
<th>Measurement Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Waveform Computation</td>
</tr>
<tr>
<td>U1</td>
<td>Yes</td>
</tr>
<tr>
<td>I1</td>
<td>Yes</td>
</tr>
<tr>
<td>U2</td>
<td>Yes</td>
</tr>
<tr>
<td>I2</td>
<td>Yes</td>
</tr>
<tr>
<td>U3</td>
<td>Yes</td>
</tr>
<tr>
<td>I3</td>
<td>Yes</td>
</tr>
<tr>
<td>U4</td>
<td>Yes</td>
</tr>
<tr>
<td>I4</td>
<td>Yes</td>
</tr>
<tr>
<td>Speed1</td>
<td>Yes</td>
</tr>
<tr>
<td>Torque1</td>
<td>Yes</td>
</tr>
<tr>
<td>Math12</td>
<td>Yes</td>
</tr>
<tr>
<td>Math22</td>
<td>Yes</td>
</tr>
<tr>
<td>FFT12</td>
<td>No</td>
</tr>
<tr>
<td>FFT22</td>
<td>No</td>
</tr>
</tbody>
</table>

*1 Applicable only to products with the motor evaluation function (motor version).
*2 Applicable only to products with the advanced computation (/G6 option).

Selecting the Data Type

Select the data type from below. The extension is automatically added.

- **Binary**
 - The following two files are created in the directory.
 - Waveform display data file (.wvf)
 - ASCII header file (.hdr)
 - Waveform display data is saved in binary format.
 - For details on the ASCII header file, see appendix 3.
 - Neither file can be loaded into the WT3000.
- **ASCII**
 - Saved in ASCII format.
 - The file can be used on your PC for analysis.
 - The file cannot be loaded into the WT3000.
- **Float**
 - Saved in 32-bit floating format.
 - The file cannot be loaded into the WT3000.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

Extension and Data Size

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Extension</th>
<th>Data Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>.wvf</td>
<td>Approx. (8K + 4 × the number of waveform sampling data points × Tw) where Tw is the number of displayed waveforms</td>
</tr>
<tr>
<td>Binary</td>
<td>.hdr</td>
<td>Approx. 1 K (condition: when there is one displayed waveform)</td>
</tr>
<tr>
<td>ASCII</td>
<td>.csv</td>
<td>Approx. 150 K (condition: when there is one displayed waveform) with the data update rate set to 50 ms</td>
</tr>
<tr>
<td>Float</td>
<td>.fld</td>
<td>4 × the number of waveform sampling data points</td>
</tr>
</tbody>
</table>

The number of waveform sampling data points of U1 to I4, Speed, Torque, Math1, Math2 in waveform computation mode

<table>
<thead>
<tr>
<th>Data Update Rate</th>
<th>Number of Waveform Sampling Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ms</td>
<td>10,000 points</td>
</tr>
<tr>
<td>100 ms</td>
<td>20,000 points</td>
</tr>
<tr>
<td>250 ms</td>
<td>50,000 points</td>
</tr>
<tr>
<td>500 ms</td>
<td>100,000 points</td>
</tr>
<tr>
<td>1 s</td>
<td>200,000 points</td>
</tr>
<tr>
<td>2 s</td>
<td>400,000 points</td>
</tr>
<tr>
<td>5 s</td>
<td>1,000,000 points</td>
</tr>
<tr>
<td>10 s</td>
<td>2,000,000 points</td>
</tr>
<tr>
<td>20 s</td>
<td>4,000,000 points</td>
</tr>
</tbody>
</table>

The number of waveform sampling data points of U1 to I4, Speed, Torque, Math1, Math2 in FFT mode

<table>
<thead>
<tr>
<th>FFT Points</th>
<th>Number of Waveform Sampling Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 k</td>
<td>200,000 points</td>
</tr>
<tr>
<td>20 k</td>
<td>20,000 points</td>
</tr>
</tbody>
</table>

* The number of waveform sampling data points do not depend on the data update rate.

The number of waveform sampling data points of FF1 and FF2 in FFT mode

<table>
<thead>
<tr>
<th>FFT Points</th>
<th>Number of FFT Waveform Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 k</td>
<td>100,000 points + 1 (DC)</td>
</tr>
<tr>
<td>20 k</td>
<td>10,000 points + 1 (DC)</td>
</tr>
</tbody>
</table>

Selecting the Waveform

- When the data type is set to Binary or ASCII, the waveform that is displayed on the screen is saved.
- When the data type is Float, the waveform of the input signal selected from the following is saved.
 - Only the input signals of the installed elements are applicable for the selection.
 - For models with the motor evaluation function (motor version), the input signals of Speed and Torque are also selectable items.
9.3 Saving Setup Parameters, Waveform Display Data, Numeric Data, Waveform Sampling Data

- Executing the Save Operation
 - The save operation may take several seconds to several hours depending on the number of waveforms to be saved, the data type, the number of waveform sampling data points determined by the data update rate, and the data transfer rate to the save destination medium. The save operation takes a long time when there are many waveforms to be saved, the data update rate is slow, and the number of waveform sampling data points is large.
 - The measurement stops while the data is being saved. The measurement resumes when the save operation completes or is aborted.
 - To execute the save operation when the data update rate is 20 s and the display is held, execute a single measurement once, and carry out the save operation after the data update due to the single measurement is complete.
 - If you carry out single measurement while the display is held, the waveform sampling data is overwritten. If you execute the save operation while the data update by the single measurement is in progress and the waveform sampling data is being overwritten, an error occurs, and the file is not created.
 - If the speed or torque signal type of the motor evaluation function is set to pulse, “ERROR” is saved for the waveform sampling data of that signal.

- Selecting the Storage Medium and Directory
 Media on which saving and reading is possible are displayed in the File List dialog box.

 Currently selected medium and directory

 ![File List](image)

<table>
<thead>
<tr>
<th>Path</th>
<th>File Type</th>
<th>Name</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PC_Card]: PC card</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[USB2]: USB memory (option) with ID number 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NetWork]: Network drive (option. see Expansion Function User's Manual IM760301-51E)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Directory

 Save destination medium

 Display Example of Storage Media
• **File Name and Comment**
 - A file name must be assigned. Comments are optional.
 - You cannot save data to a file name that already exists in the same directory (overwriting not allowed).

Number and Types of Characters That Can Be Used

<table>
<thead>
<tr>
<th>Item</th>
<th>Number of Characters</th>
<th>Characters That Can Be Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Name</td>
<td>1 to 8 characters</td>
<td>0-9, A-Z, %, _, () (parentheses), - (minus sign)</td>
</tr>
<tr>
<td>Comment</td>
<td>0 to 25 characters</td>
<td>Characters that are displayed on the keyboard and spaces</td>
</tr>
</tbody>
</table>

• **Auto Naming Function**
 When Auto Naming is turned ON, files with a four digit number from 0000 to 2499 are automatically created when saving the data. You can specify a common name (up to 4 characters, specified through Filename) that is placed before the number.

• **Specifying the File to Be Displayed in the File List Dialog Box**
 The explanation is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

• **Properties**
 The explanation is the same as that given in “Properties” in section 9.6.

Note

• For the meanings of the measurement function symbols that are displayed, see section 2.2, “Measurement Functions and Measurement Periods,” 2.5, “Computation,” 2.6, “Integration,” appendix 1, “Symbols and Determination of Measurement Functions,” and Expansion Function User’s Manual IM760301-51E.
• For details on the wiring units expressed as ΣA and ΣB, see section 4.1, “Selecting the Wiring System.”
• The maximum order for which the harmonic data is saved is the maximum harmonic order to be measured that is specified in the harmonic measurement (option) menu.
• Up to 41 characters can be displayed in the path.
• File names are not case-sensitive. Comments are case-sensitive. In addition, the following five file names cannot be used due to limitations of MS-DOS.
 - AUX, CON, PRN, NUL, and CLOCK
• The maximum number of files that can fit in one directory is 2500. If you need to save more than 2500 files, change the directory or move the existing files to another directory.
• The header section of the saved file is in a common format used by YOKOGAWA’s measuring instruments. Therefore, data that is not used by the SL1400 is also included.
• Setup parameters that have been saved on products with firmware version having incompatible data cannot be loaded.
• You can use the File Reader Software\(^2\) to view the following files and convert them into CSV files on your PC.
 - Waveform display data file saved in binary format (*.wvf)
 - Numeric data file saved in float format (*.WTD)
 - Setup parameter file (*.SET)
\(^2\) The software program can be downloaded by accessing the Download and Support page from the following URL.
 http://www.yokogawa.com/tm/
• If you change the extension of the file such as on a PC, the file can no longer be loaded into the File Reader Software.
9.4 Saving the Screen Image Data

CAUTION

Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on the it.

Procedure

1. Press **SHIFT+IMAGE SAVE (MENU)** to display the Image Save menu.

- **Selecting the Data Format**
 2. Press the **Format** soft key to display the Format menu.
 3. Press any soft key from **TIFF**, **BMP**, **Post Script**, **PNG**, and **JPEG** to select the data format.

- **Selecting the Color Mode**
 (Selectable only when the data format is set to TIFF, BMP, PNG, or JPEG in step 3)
 4. Press the **cursor keys** to select Color, Reverse (white background), Gray (grayscale), or OFF.

- **Turning ON/OFF the Data Compression**
 (Selectable only when the data format is set to BMP in step 3 and the color mode is set to Color, Reverse, or Gray in step 4.)
 5. Press the **Compression(Color)** soft key to select ON or OFF.
• Setting Comments
6. Press the Comment soft key. A keyboard appears.
7. Use the keyboard to enter the comment.
 For keyboard operations, see section 3.14, “Entering Values and Strings.”

8. Press the File List soft key to display the File List dialog box.
9. The procedure is the same as that given in “Selecting the Storage Medium” and “Selecting the Save Destination Directory” in section 9.3.
10. Press ESC to close the File List dialog box.
9.4 Saving the Screen Image Data

• Setting the file name

11. Press the File Name soft key to display the File Name dialog box.
12. Press the cursor keys to select Auto Naming.
13. Press SET to select ON or OFF.
14. Press the cursor keys to select File Name.
15. Press SET. A keyboard appears.
16. Use the keyboard to set the file name.
 For keyboard operations, see section 3.14, “Entering Values and Strings.”
17. Press ESC to close the File Name dialog box.

• Executing or Aborting the Save Operation

Display the desired screen and carry out the following procedure.

Press IMAGE SAVE. The screen image data is saved to the directory indicated by Path=...... If you press IMAGE SAVE again while the save operation is in progress, the operation is aborted. An icon appears at the upper left corner of the screen while the save operation is in progress.
9.4 Saving the Screen Image Data

The screen image data can be saved.

• **Data Format and Extension**
The data in the following formats can be saved. The extension that is automatically added and the data size are indicated below.

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Extension</th>
<th>Data Size (Reference Value, Unit: Bytes)</th>
<th>Color</th>
<th>Color (data compression)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIFF</td>
<td>.TIF</td>
<td>Approx. 40 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP</td>
<td>.BMP</td>
<td>Approx. 40 K</td>
<td>Approx. 310 K</td>
<td></td>
</tr>
<tr>
<td>Post Script</td>
<td>.PS</td>
<td>Approx. 80 K</td>
<td></td>
<td>Approx. 30 K</td>
</tr>
<tr>
<td>PNG</td>
<td>.PNG</td>
<td>Approx. 5 K</td>
<td>Approx. 10 K</td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td>.JPG</td>
<td>Approx. 40 K</td>
<td>Approx. 50 K</td>
<td></td>
</tr>
</tbody>
</table>

• **Color Mode**
The color mode can be selected when the data format is TIFF, BMP, PNG, or JPEG.
 • Color: Color (256 colors)
 • Reverse: White background, black text, color waveforms
 • Gray: 16 gray levels
 • OFF: Black and white

• **Turning ON/OFF Data Compression**
The data compression can be turned ON/OFF when the data format is BMP and the color mode is Color, Reverse, or Gray.
 • OFF: Do not compress the data.
 • ON: Compress the data with RLE.

• **File Name and Comment**
The explanation is the same as that given in “File Name and Comment” in section 9.3. However, only the first 20 characters of the comment appears on the screen.

• **Selecting the Storage Medium and Directory**
The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.

• **Auto Naming Function**
Same as the explanation in “Auto Naming Function” in section 9.3.

Note

• The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.
• If you change the extension of the file such as on a PC, the file can no longer be loaded.
• Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.
• Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, “...” is displayed at the end of the character string.
• File names are not case-sensitive. Comments are case-sensitive. In addition, the following names cannot be used due to limitations of MS-DOS.
 AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
9.5 Loading Setup Parameters

CAUTION

Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on it.

Procedure

1. Press **FILE** to display the File menu.
9.5 Loading Setup Parameters

2. Press the **Load** soft key. The Load Menu and the File List dialog box appears.

- **Selecting the Load Source Storage Medium**
3. Press the **cursor keys** to select the load source storage medium (indicated by `[]`).
4. Press **SET** to confirm the storage medium.

- **Selecting the Load Source Directory**
(Perform this operation when directories are present on the medium.)
5. Press the **cursor keys** to select the load source directory (indicated by `< >`).
6. Press **SET** to confirm the directory.
 - The selected storage medium/directory is displayed in “Path=.....” located above and to the left of the File List dialog box.
 - Select `<.. >` and press **SET** to return to a higher level directory.

7. Press the **cursor keys** to select the file.

- **Executing the Load Operation**
8. Press the **Load Exec** soft key. The selected file is read from the directory indicated in Path=..... At the same time, the Load Exec soft key changes to the **Abort** soft key.

- **Aborting the Load Operation**
9. Press the **Abort** soft key. The load operation is aborted. At the same time, the Abort soft key changes to the Load Exec soft key.
9.5 Loading Setup Parameters

- **Specifying the File to Be Displayed in the File List Dialog Box**
 The procedure is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- **Viewing the Properties**
 The procedure is the same as that given in “Viewing the Properties” in section 9.6.

Explanation

The setup parameters saved using the WT3000 can be loaded.

- **Selecting the Storage Medium and Directory**
 The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.

- **Specifying the File to Be Displayed in the File List Dialog Box**
 The explanation is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- **Properties**
 The explanation is the same as that given in “Properties” in section 9.6.

Note

- An error occurs if a key other than the Abort key is pressed while saving or loading a file.
- The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.
- If you change the extension of the setup parameter file such as on a PC, the file can no longer be loaded into WT3000.
- Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.
- Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, “...” is displayed at the end of the character string.
- File names are not case-sensitive. Comments are case-sensitive. In addition, the following names cannot be used due to limitations of MS-DOS.
 - AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
- If the setup parameters that are saved to a file are loaded, the key settings are changed to the loaded information and cannot be undone. It is recommended that you first save the current setup parameters and then load the setup parameters from a file.
- Setup parameters such as the date and time, and communications are not saved. Therefore, loading setup parameters from a file will not change these settings.
- Setup parameters that have been saved on products with firmware version having incompatible data cannot be loaded.
- Setup parameters saved on models with a different product version, element configuration, or options as well as models with a different firmware (ROM) version of incompatible data cannot be loaded.
9.6 Specifying the File to Be Displayed, Displaying File Properties, and Selecting File Attributes

CAUTION

Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on the it.

Procedure

1. Press **FILE** to display the File menu.
3. Press the **Function** soft key to display the Function menu.
4. Press the **Delete** soft key to display the Delete menu.

- **Selecting the Storage Medium and Directory**
5. The procedure is the same as that given in “Selecting the Storage Medium” and “Selecting the Save Destination Directory” in section 9.3.
• Specifying the File to Be Displayed in the File List Dialog Box
 6. Press the Filter soft key to select Item or All.
 • If you select Item, the list of files corresponding to the file type (Setup, Wave, or Numeric) that is specified for File Item in the File menu, in the directory selected in step 5, is displayed.
 • If you select All, the list of all the files in the directory selected in step 5 is displayed.

• Viewing the Properties
 7. On the File List dialog box, press the cursor keys to select the file.
 8. Press the Property soft key to display the file property window.
 9. Press ESC to close the file property window.

• Selecting the File Attribute
 10. Press the cursor keys to select the file.
 11. Press the Attribute soft key. The attribute of the selected file changes to R or R/W.
9.6 Specifying the File to Be Displayed, Displaying File Properties, and Selecting File Attributes

Explanation

- **Selecting the Storage Medium and Directory**
 The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.

- **Specifying the File to Be Displayed in the File List Dialog Box**
 You can specify the file to be displayed in the File List dialog box.
 - **Item**
 The list of files corresponding to the file type (Setup, Wave, or Numeric) that is specified for File Item in the File menu, in the selected directory, is displayed.
 - **All**
 The list of all the files in the selected directory is displayed.

- **Properties**
 Displays the following information about the selected file: filename.extension, the file size, the date the file was saved, the attribute, the comment, etc.

- **Selecting the File Attribute**
 Select the file attribute of each file from the following.
 - **R/W**
 Read and write.
 - **R**
 Read only. Cannot write to the file or delete the file.

Note

- You cannot change a directory attribute.
- The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.
- Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.
- Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, “...” is displayed at the end of the character string.
- File names are not case-sensitive. Comments are case-sensitive. In addition, the following names cannot be used due to limitations of MS-DOS.
 - AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
9.7 Deleting Files

CAUTION

Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on it.

Procedure

1. Press **FILE** to display the File menu.
3. Press the **Function** soft key to display the Function menu.
4. Press the **Delete** soft key to display the Delete menu.

- **Selecting the Storage Medium and Directory**
 5. The procedure is the same as that given in “Selecting the Storage Medium” and “Selecting the Save Destination Directory” in section 9.3.
9.7 Deleting Files

- **Specifying the File to Be Displayed in the File List Dialog Box**
 6. The procedure is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- **Viewing the Properties**
 7. The procedure is the same as that given in “Viewing the Properties” in section 9.6.

- **Selecting the File Attribute**
 8. The procedure is the same as that given in “Selecting the File Attribute” in section 9.6.

- **Selecting the File to Be Deleted One at a Time**
 9. Press the cursor keys to select the file.
 10. Press the Set/Reset soft key. If an asterisk is displayed to the left of the file name in the File List window, the file will be deleted. If the asterisk to the left of the file name disappears, the file will not be deleted.

Proceed to step 12.

- **Selecting the Files to Be Deleted at Once**
 9. Press the cursor keys to select a file, directory, or storage medium.
 10. Press the All Set soft key. Asterisks appear to the left of the directory containing the selected file and all the files in the directory, the selected directory and all the files in the directory, or all the directories and files in the selected storage medium. The corresponding items will be deleted. At the same time, the All Set key changes to the All Reset soft key.
 11. Press the All Reset soft key. Asterisks to the left of the directory containing the selected file and all the files in the directory, the selected directory and all the files in the directory, or all the directories and files in the selected storage medium disappear. The corresponding items will not be deleted. At the same time, the All Reset soft key changes to the All Set soft key.
9.7 Deleting Files

- Executing the Delete Operation
 12. Press the Delete Exec soft key. All files with asterisk marks are deleted.

 Explanation

- Selecting the Storage Medium and Directory
 The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.

- Specifying the File to Be Displayed in the File List Dialog Box
 The explanation is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- Properties
 The explanation is the same as that given in “Properties” in section 9.6.

- Selecting the File Attribute
 The explanation is the same as that given in “Selecting the File Attribute” in section 9.6.

- Selecting the Files to Be Deleted

 - By placing asterisk marks to the left of the file names, those files can be deleted.

 - There are two ways to select the files to be deleted.

 - Selecting the files one at a time
 Press the Set/Reset soft key to place an asterisk mark to the left of the files one at a time.

 - Selecting the files at once
 Press the All Set soft key to place asterisk marks to the left of the selected file names at once. There are three methods in selecting the files at once.

 - If you select a file and press the All Set soft key, asterisk marks are placed by the directory containing the selected file and all the files in the directory.

 - If you select a directory and press the All Set soft key, asterisk marks are placed by the selected directory and all the files in the directory.

 - If you select a storage medium and press the All Set soft key, asterisk marks are placed by all the directories and files in the selected storage medium.

 Note

 - Data that is deleted cannot be recovered. Be sure you erase the correct files.

 - You can delete directories if there are no files in them.

 - If the file attribute (see section 9.6) is "R," you cannot delete the file.

 - If an error occurs while deleting multiple files, the files after the error occurrence are not deleted.

 - The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.

 - Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.

 - Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, “...” is displayed at the end of the character string.
9.8 Copying Files

CAUTION

Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on the it.

Procedure

1. Press **FILE** to display the File menu.
3. Press the **Function** soft key to display the Function menu.
4. Press the **Copy** soft key to display the Copy menu.

- **Selecting the Copy Source Storage Medium or Directory**
 5. The procedure is the same as that given in “Selecting the Storage Medium” and “Selecting the Save Destination Directory” in section 9.3.
9.8 Copying Files

- Specifying the File to Be Displayed in the File List Dialog Box
 6. The procedure is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- Viewing the Properties
 7. The procedure is the same as that given in “Viewing the Properties” in section 9.6.

- Selecting the File Attribute
 8. The procedure is the same as that given in “Selecting the File Attribute” in section 9.6.

- Selecting the Copy Source Files One at a Time
 9. Press the cursor keys to select the file.
 10. Press the Set/Reset soft key. If an asterisk is displayed to the left of the file name in the File List dialog box, the file will be copied. If the asterisk to the left of the file name disappears, the file will not be copied.
 Proceed to step 12.

- Selecting the Copy Source Files at Once
 9. Press the cursor keys to select a file, directory, or storage medium.
 10. Press the All Set soft key. Asterisks appear to the left of the directory containing the selected file and all the files in the directory, the selected directory and all the files in the directory, or all the directories and files in the selected storage medium. The corresponding items will be copied. At the same time, the All Set soft key changes to the All Reset soft key.
 11. Press the All Reset soft key. Asterisks to the left of the directory containing the selected file and all the files in the directory, the selected directory and all the files in the directory, or all the directories and files in the selected storage medium disappear. The corresponding items will not be copied. At the same time, the All Reset soft key changes to the All Set soft key.
• Selecting the Copy Destination
12. Press the **Dest Dir** soft key. The copy execution menu and the copy destination File List dialog box appear.

• Selecting the Copy Destination Storage Medium or Directory
13. The procedure is the same as that given in “Selecting the Storage Medium” and “Selecting the Save Destination Directory” in section 9.3.

• Executing the Copy Operation
14. Press the **Copy Exec** soft key. All the copy source files with asterisk marks are copied.
9.8 Copying Files

Explanation

- **Selecting the Copy Source/Destination Storage Medium and Directory**
 The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.

- **Specifying the File to Be Displayed in the File List Dialog Box**
 The explanation is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- **Properties**
 The explanation is the same as that given in “Properties” in section 9.6.

- **Selecting the File Attribute**
 The explanation is the same as that given in “Selecting the File Attribute” in section 9.6.

- **Selecting the Copy Source Files**
 - By placing asterisk marks to the left of the file names, those files can be copied.
 - There are two methods in selecting the files to be copied.
 - Selecting the files one at a time
 Press the Set/Reset soft key to place an asterisk mark to the left of the files one at a time.
 - Selecting the files at once
 Press the All Set soft key to place asterisk marks to the left of the selected file names at once. There are three methods in selecting the files at once.
 - If you select a file and press the All Set soft key, asterisk marks are placed by the directory containing the selected file and all the files in the directory.
 - If you select a directory and press the All Set soft key, asterisk marks are placed by the selected directory and all the files in the directory.
 - If you select a storage medium and press the All Set soft key, asterisk marks are placed by all the directories and files in the selected storage medium.

Note

- You cannot copy files if files with the same file name exist at the copy destination.
- You cannot copy the same files to another directory after copying the files. Select the files to be copied again and copy them.
- If an error occurs while copying multiple files, the files after the error occurrence are not copied.
- The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.
- Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.
- Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, “...” is displayed at the end of the character string.
9.9 Renaming Files or Directories and Creating Directories

CAUTION

Do not remove the PC card or USB memory or turn OFF the power when the access indicator or icon of the PC card or USB memory is blinking. This can damage the PC card or USB memory or destroy the data on the it.

Procedure

1. Press FILE to display the File menu.
3. Press the Function soft key to display the Function menu.

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
9.9 Renaming Files or Directories and Creating Directories

Renaming a Directory or File

4. Press the Rename soft key to display the Rename menu.

- Selecting the Storage Medium and Directory
 5. The procedure is the same as that given in “Selecting the Storage Medium” and “Selecting the Save Destination Directory” in section 9.3.

- Specifying the File to Be Displayed in the File List Dialog Box
 6. The procedure is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- Viewing the Properties
 7. The procedure is the same as that given in “Viewing the Properties” in section 9.6.

- Selecting the File Attribute
 8. The procedure is the same as that given in “Selecting the File Attribute” in section 9.6.

- Renaming a Directory or File
 9. Press the cursor keys to select the directory or file.
 10. Press the File Name soft key. A keyboard appears. The name of the selected directory or file is displayed in the entry box of the keyboard.
 11. Use the keyboard to enter the directory or file name.
 For keyboard operations, see section 3.14, “Entering Values and Strings.”
Creating a Directory

4. Press the `MakeDir` soft key to display the `MakeDir` menu.

5. **Selecting the Storage Medium and Directory**
 - The procedure is the same as that given in "Selecting the Storage Medium" and "Selecting the Save Destination Directory" in section 9.3.

6. **Specifying the File to Be Displayed in the File List Dialog Box**
 - The procedure is the same as that given in "Specifying the File to Be Displayed in the File List Dialog Box" in section 9.6.

7. **Viewing the Properties**
 - The procedure is the same as that given in "Viewing the Properties" in section 9.6.

8. **Selecting the File Attribute**
 - The procedure is the same as that given in "Selecting the File Attribute" in section 9.6.

9. **Creating a Directory**
 - Press the cursor keys to select the storage medium or a directory.
 - Press the `Dir Name` soft key. A keyboard appears.
 - Use the keyboard to enter the directory name.
 - For keyboard operations, see section 3.14, "Entering Values and Strings."
9.9 Renaming Files or Directories and Creating Directories

Explanation

- **Selecting the Storage Medium and Directory**
 The explanation is the same as that given in “Selecting the Storage Medium and Directory” in section 9.3.

- **Specifying the File to Be Displayed in the File List Dialog Box**
 The explanation is the same as that given in “Specifying the File to Be Displayed in the File List Dialog Box” in section 9.6.

- **Properties**
 The explanation is the same as that given in “Properties” in section 9.6.

- **Selecting the File Attribute**
 The explanation is the same as that given in “Selecting the File Attribute” in section 9.6.

- **Renaming a Directory or File**
 The method for setting the name when renaming a directory or file is the same as the explanation given in “File Name and Comment” in section 9.3.

- **Creating Directories**
 You can create a new directory on the storage medium. The method for setting the name when creating a directory is the same as the explanation given in “File Name and Comment” in section 9.3.

Note

- You cannot change a directory attribute.
- If a file with the same name already exists in the same directory, the file cannot be renamed.
- If a directory with the same name already exists in the same directory, the directory cannot be created.
- The number of directories and files that can be displayed in the file list is 2500. If the number of directories and files in a directory exceeds 2500, the file list randomly displays 2500 of the directories and files.
- Files that do not have an archive attribute are not displayed in the File List window. Do not remove the archive attribute of the files saved by the WT3000 using your PC.
- Up to 41 characters can be displayed in the path. If the path exceeds 41 characters, “...” is displayed at the end of the character string.
- Directory names are not case-sensitive. Comments are case-sensitive. In addition, the following names cannot be used due to limitations of MS-DOS.
 AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
10.1 Zero-Level Compensation

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

Press SHIFT+SINGLE (CAL). Zero-level compensation is executed.

Explanation

Zero-Level Compensation

This function is used to create a zero input condition using the internal circuit of the instrument and setting the level at that point to zero level. Zero-level compensation must be performed to meet the specifications of this instrument (see chapter 12).

- Pressing CAL executes the zero-level compensation.
- Zero-level compensation is automatically performed after changing the measurement range or input filter.

Note

- For making accurate measurements, it is recommended that zero-level compensation be performed after warming up the instrument for at least 30 minutes. In addition, the ambient temperature needs to be within the specifications (see chapter 12) and stable.
- If the measurement range and input filter are not changed over a long period of time, the zero level may change due to the changes in the environment surrounding the instrument. It is recommended that zero-level compensation be performed in this case.
- There are functions that automatically perform zero-level compensation during integration. See section 5.13.
10.2 NULL Function

Procedure

- **Activating the NULL Function**
 1. Press `SHIFT + SYNC SOURCE (NULL)`. The NULL indicator to the lower left of the key illuminates when the NULL function operates and the measured values are updated.

- **Clearing the NULL Function**
 2. Press `SHIFT + SYNC SOURCE (NULL)` when the NULL function is activated. The NULL indicator turns OFF and the NULL function is released.

Explanation

The NULL function can be used to subtract the DC offset while the external sensor or measurement cable is connected. Execute the NULL function at no input condition (opened current input terminal and shorted voltage input terminal).

NULL Value

The NULL values are set to the Udc and Idc values (numeric data of the simple average of voltage/current) as well as speed and torque (on models with the motor evaluation function when the input signal from the sensor is analog) that were measured the previous time when the voltage/current mode is set to DC and the NULL function is turned ON. If the previously measured Udc and Idc as well as Speed and Torque values do not exist, such as when the NULL function is turned ON without making a measurement after turning ON the power, Udc and Idc are set to zero. To subtract the DC offset using the NULL function when making measurements with the voltage/current mode set to RMS, MEAN, or RMEAN, activate the NULL function with the voltage/current mode set to DC and then change the voltage/current mode to RMS, MEAN, or RMEAN.

Note

- The NULL function is automatically released when the range or filter setting is changed or integration is started.
- If you perform the procedure of releasing the NULL function while in the hold condition, the NULL function is actually released and the NULL indicator turns OFF when the hold is released or when a single measurement is made.
- If the crest factor is set to 3, a NULL value of approximately 50% is set for a signal that exceeds 50% of the range. If the crest factor is set to 6, a NULL value of approximately 100% is set for a signal that exceeds 100% of the range.
• Measurement Functions Affected by the NULL Function
 The NULL value is subtracted from the sampled data. Hence, all measurement
 functions are affected by the NULL values.

• Limitations on the NULL Function by Measurement Modes
 The NULL function cannot be used in the following measurement modes.
 • Wide bandwidth harmonic measurement mode
 • IEC harmonic measurement mode
 • Voltage fluctuation and flicker measurement mode
 • Cycle-by-cycle measurement mode
10.3 Selecting the Sampling Frequency

Procedure

1. Press **MEASURE** to display the Measure menu.
2. Press the **Sampling Frequency** soft key to display the Sampling Frequency menu.
3. Press any of the soft keys from **Auto, Clock A to C** to select the sampling frequency.

Explanation

The frequency used to acquire the sampled data to compute the measurement functions can be selected.

- **Auto**: Automatically switches the following Clock A, B, and C.
- **Clock A**: Samples at 183.823 kHz.
- **Clock B**: Samples at 189.394 kHz.
- **Clock C**: Samples at 195.313 kHz.

Note

- You can set the sampling frequency to Auto to prevent the measured data from becoming invalid due to aliasing (section 2.7).
- If you wish to fix the sampling frequency, select one of the frequency settings above.
- The sampling frequency is automatically set to 200 kHz in waveform computation, FFT, voltage fluctuation and flicker measurement, and cycle-by-cycle measurement modes.
10.4 Selecting the Display Font

Procedure

1. Press **MISC** to display the Misc menu.
2. Press the **Config** soft key to display the Config menu.
3. Press the **Font** soft key to display the Font menu.
4. Press the **Gothic** or **Roman** soft key to select the display font.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
10.4 Selecting the Display Font

Explanation

The font used to display characters and numbers can be selected.
- **Gothic**: A font with constant line width.
- **Roman**: A font in which the vertical lines are thicker than horizontal lines with emphasis at the beginning and end of the stroke.

Note

Both the Gothic and Roman fonts used on the WT3000 are original fonts designed by YOKOGAWA. Therefore, the details of each font may differ from that of other devices.
10.5 Selecting the Screen Brightness

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press MISC to display the Misc menu.
2. Press the Config soft key to display the Config menu.
3. Press the cursor keys to select a value between –1 and 3.

Explanation

Selecting the Screen Brightness
Select the screen brightness in the range of –1 to 3. The darkest setting is –1 and the brightest setting is 3.
10.6 Setting the Display Color

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press MISC to display the Misc menu.

2. Press the Next 1/2 soft key to display the Next 2/2 menu.

3. Press the Graph Color soft key to display the Graph Color menu.

4. Press the cursor keys to select Default or User.

• Setting the Graphic Color
 • Selecting Default or User
10.6 Setting the Display Color

- **Setting User Colors**
 3. Press the User Color soft key to display the Graph Color dialog box.
 4. Press the cursor keys to select the item you wish to set.
 5. Press SET. A box used to set the color level appears.
 6. Press the cursor keys to set the color level.
 7. Press SET or ESC to close the box.

![Graph Color dialog box diagram]

- **Setting the Text Color**
 - **Selecting Preset or User**
 3. Press the Text Color soft key to display the Text Color menu.
 4. Press the cursor keys to select a value between Preset1 and User.

![Text Color menu diagram]

- **Setting User Colors**
 3. Press the User Color soft key to display the Text Color dialog box.
 4. Press the cursor keys to select the item you wish to set.
 5. Press SET. A box used to set the color level appears.
 6. Press the cursor keys to set the color level.
 7. Press SET or ESC to close the box.
The display color for each item can be specified. Set the color using a ratio (0-7) of red (R), green (G), and blue (B).

Setting the Graphic Color
Select default color or a user color.
For user color, the display color can be specified for each item.
- Back
 Set the background color within the waveform display frame.
- Grid
 Set the color of the grid within the waveform display frame and the waveform display frame.
- Cursor
 Set the display color of the cursor.
- U1 to I4, Speed*, and Torque*
 Set the display color of the waveform. I3 and Speed are set to the same display color. The same hold true for U4 and Torque.
 * Applicable only to products with the motor evaluation function (motor version).

Setting the Text Color
Select from Preset1 to 3 and user setting.
For user color, the display color can be specified for each item.
- Menu Fore
 Set the color of the text on the menu, dialog box, window, and other screens.
- Menu Back
 Set the background color of the waveform display frame.
- Select Box
 Set the background color of the background within the selected menu frame and box.
- Sub Menu
 Set the display color of the selected dialog box or window.
- Selected Key
 Set the display color of the selected soft key or item.
10.7 Setting the Key Lock and Shift Lock Function

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase "press the cursor keys" may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press MISC to display the Misc menu.
2. Press the Config soft key to display the Config menu.

- Setting Key Lock
3. Press the Key Lock soft key to select ON or OFF.

- Setting Shift Lock
3. Press the Shift Lock soft key to select ON or OFF.
10.7 Setting the Key Lock and Shift Lock Function

Explanation

- **Key Lock**
 If key lock is turned ON, all keys except the power switch, MISC key, ESC key, and the 5th soft key from the top are disabled.
 When key lock is ON, the word “Lock” is displayed at the upper right corner of the screen.

Note

Key lock ON/OFF setting is held even when the power is turned OFF.

- **Turning the Shift Lock ON/OFF**
 You can select whether the shifted condition is released after selecting a setup menu marked in purple below the key in the shifted condition (condition in which the Shift key is pressed).
 - **OFF**
 Releases the shifted condition.
 - **ON**
 Does not release the shifted condition. You can continue to select the setup menus marked in purple. To release the shifted condition, press the Shift key.
10.8 Help Function

Procedure

- Displaying the Help Window
 1. Press HELP to display the help window.
 2. Press the key or soft key that you wish to review.

- Clearing the Help Window

Explanation

- Displaying the Help Window
 When you press HELP, a help window containing information about the soft key menu that was displayed immediately before HELP was pressed appears.
 If you press a key while the help window is displayed, a help window containing information about the key appears.

- Clearing the Help Window
 If you press the HELP key again while a help window is displayed, the help window closes.
10.9 Master/Slave Synchronization Measurement

Procedure

- **Selecting Master or Slave Mode**
 1. Press **MEASURE** to display the Measure menu.
 2. Press the **Sync Measure** soft key to select Master or Slave.

- **Performing Synchronized Measurements**
 Connect the external start signal input/output connectors between the master and slave instruments using BNC cables (sold separately).
 - The slave instrument starts its measurement at approximately the same time as the start of the measurement on the master instrument.
 - The slave instrument stops its measurement at approximately the same time as the stop of the measurement on the master instrument.

To exit the menu during operation, press **ESC** located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.
With the master instrument outputting measurement start signal and the slave instrument receiving the signal, synchronized measurement between two instruments is achieved.

- **External Start Signal Input/Output Connector**
 Connect the external start signal input/output connectors on the rear panel between the master and slave instruments using BNC cables (sold separately).

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>I/O level</td>
<td>TTL</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>Output logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Measurement start delay time</td>
<td>(1 μs + 1 sample interval)</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Output hold time</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Input logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Minimum pulse width</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Input delay time</td>
<td>During HOLD ON</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>(1 μs + 1 sample interval)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>During HOLD OFF</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>Within (63 ns + 1 sample period)</td>
<td></td>
</tr>
</tbody>
</table>

Note

The master and slave conditions in which synchronized measurement is not possible are as follows:
- The data update rate differs between the master and slave.
- During real-time integration mode or real-time store mode.

Carry out the hold operation according to the procedure below during synchronized measurement.
- Hold ON: Turn the hold function ON from the WT3000 set to master.
- Hold OFF: Turn the hold function OFF from the WT3000 set to slave.

- **Output Circuit for the External Start Signal and Time Chart**

Explanation

10.9 Master/Slave Synchronization Measurement

With the master instrument outputting measurement start signal and the slave instrument receiving the signal, synchronized measurement between two instruments is achieved.

- **External Start Signal Input/Output Connector**
 Connect the external start signal input/output connectors on the rear panel between the master and slave instruments using BNC cables (sold separately).

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>I/O level</td>
<td>TTL</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>Output logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Measurement start delay time</td>
<td>(1 μs + 1 sample interval)</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Output hold time</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Input logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Minimum pulse width</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Input delay time</td>
<td>During HOLD ON</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>(1 μs + 1 sample interval)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>During HOLD OFF</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>Within (63 ns + 1 sample period)</td>
<td></td>
</tr>
</tbody>
</table>

Note

The master and slave conditions in which synchronized measurement is not possible are as follows:
- The data update rate differs between the master and slave.
- During real-time integration mode or real-time store mode.

Carry out the hold operation according to the procedure below during synchronized measurement.
- Hold ON: Turn the hold function ON from the WT3000 set to master.
- Hold OFF: Turn the hold function OFF from the WT3000 set to slave.

- **Output Circuit for the External Start Signal and Time Chart**

Explanation

10.9 Master/Slave Synchronization Measurement

With the master instrument outputting measurement start signal and the slave instrument receiving the signal, synchronized measurement between two instruments is achieved.

- **External Start Signal Input/Output Connector**
 Connect the external start signal input/output connectors on the rear panel between the master and slave instruments using BNC cables (sold separately).

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>I/O level</td>
<td>TTL</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>Output logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Measurement start delay time</td>
<td>(1 μs + 1 sample interval)</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Output hold time</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Input logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Minimum pulse width</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Input delay time</td>
<td>During HOLD ON</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>(1 μs + 1 sample interval)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>During HOLD OFF</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>Within (63 ns + 1 sample period)</td>
<td></td>
</tr>
</tbody>
</table>

Note

The master and slave conditions in which synchronized measurement is not possible are as follows:
- The data update rate differs between the master and slave.
- During real-time integration mode or real-time store mode.

Carry out the hold operation according to the procedure below during synchronized measurement.
- Hold ON: Turn the hold function ON from the WT3000 set to master.
- Hold OFF: Turn the hold function OFF from the WT3000 set to slave.

- **Output Circuit for the External Start Signal and Time Chart**

Explanation

10.9 Master/Slave Synchronization Measurement

With the master instrument outputting measurement start signal and the slave instrument receiving the signal, synchronized measurement between two instruments is achieved.

- **External Start Signal Input/Output Connector**
 Connect the external start signal input/output connectors on the rear panel between the master and slave instruments using BNC cables (sold separately).

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>I/O level</td>
<td>TTL</td>
<td>Common to master and slave</td>
</tr>
<tr>
<td>Output logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Measurement start delay time</td>
<td>(1 μs + 1 sample interval)</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Output hold time</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the master</td>
</tr>
<tr>
<td>Input logic</td>
<td>(negative logic), falling edge</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Minimum pulse width</td>
<td>Low level, 500 ns or more</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td>Input delay time</td>
<td>During HOLD ON</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>(1 μs + 1 sample interval)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>During HOLD OFF</td>
<td>Applies to the slave</td>
</tr>
<tr>
<td></td>
<td>Within (63 ns + 1 sample period)</td>
<td></td>
</tr>
</tbody>
</table>

Note

The master and slave conditions in which synchronized measurement is not possible are as follows:
- The data update rate differs between the master and slave.
- During real-time integration mode or real-time store mode.

Carry out the hold operation according to the procedure below during synchronized measurement.
- Hold ON: Turn the hold function ON from the WT3000 set to master.
- Hold OFF: Turn the hold function OFF from the WT3000 set to slave.

- **Output Circuit for the External Start Signal and Time Chart**

10.9 Master/Slave Synchronization Measurement

- Input Circuit for the External Start Signal and Time Chart

![Input Circuit Diagram]

CAUTION

- When the instrument is set to master, do not apply external voltage to the external start signal input/output connector (START). If you do, the instrument may malfunction.
- Applying a voltage outside the 0 to 5 V range to the external start signal input/output connector when the instrument is set to slave may cause damage to the instrument.

- Limitations on the Synchronized Measurement by Measurement Modes
 Synchronized measurement cannot be used in the following measurement modes.
 - Wide bandwidth harmonic measurement mode
 - IEC harmonic measurement mode
 - Waveform computation mode
 - FFT mode
 - Voltage fluctuation and flicker measurement mode
 - Cycle-by-cycle measurement mode
Chapter 11 Troubleshooting, Maintenance, and Inspection

11.1 Troubleshooting

Troubleshooting

- If a message is displayed on the screen, read the following pages.
- If servicing is necessary, or if the instrument is not operating correctly after performing the corrective actions, contact your nearest YOKOGAWA dealer.

<table>
<thead>
<tr>
<th>Problem and Corrective Action</th>
<th>Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing shows up on the display when the power switch is turned ON.</td>
<td>3.3</td>
</tr>
<tr>
<td>Securely connect the power cord to the power connector of the instrument and the power outlet.</td>
<td></td>
</tr>
<tr>
<td>Set supply voltage within the permitted range.</td>
<td>3.3</td>
</tr>
<tr>
<td>Check the display settings.</td>
<td>10.6</td>
</tr>
<tr>
<td>Check that the fuse is not blown.</td>
<td>11.5</td>
</tr>
<tr>
<td>The displayed data is not correct.</td>
<td></td>
</tr>
<tr>
<td>Check that the ambient temperature and humidity are within the specifications.</td>
<td>3.2</td>
</tr>
<tr>
<td>Check that the noise is not affecting the measurement.</td>
<td>3.1, 3.5</td>
</tr>
<tr>
<td>Check the wiring of the measurement cable.</td>
<td>3.8 to 3.11</td>
</tr>
<tr>
<td>Check the wiring system.</td>
<td>3.8 to 3.11, 4.1</td>
</tr>
<tr>
<td>Check that the line filter is turned OFF.</td>
<td>4.8</td>
</tr>
<tr>
<td>Check the measurement period settings.</td>
<td>4.7</td>
</tr>
<tr>
<td>Check the FAQ at the following URL.</td>
<td>–</td>
</tr>
<tr>
<td>http://www.yokogawa.com/tm/</td>
<td></td>
</tr>
<tr>
<td>Power cycle the instrument.</td>
<td>3.4</td>
</tr>
<tr>
<td>Keys do not work.</td>
<td></td>
</tr>
<tr>
<td>Check that the REMOTE indicator is ON, press the LOCAL key to turn it OFF.</td>
<td>–</td>
</tr>
<tr>
<td>Check that key lock is OFF.</td>
<td>10.7</td>
</tr>
<tr>
<td>Perform a key test. If it fails, servicing is required.</td>
<td>11.3</td>
</tr>
<tr>
<td>Triggering does not work.</td>
<td></td>
</tr>
<tr>
<td>Check the trigger conditions.</td>
<td>6.4</td>
</tr>
<tr>
<td>Check that the trigger source is being applied.</td>
<td>6.4</td>
</tr>
<tr>
<td>Unable to make harmonic measurements.</td>
<td></td>
</tr>
<tr>
<td>Check the PLL source settings.</td>
<td>–*1</td>
</tr>
<tr>
<td>Check that the PLL source input signal is within the specifications.</td>
<td>–*1</td>
</tr>
<tr>
<td>Unable to print on the built-in printer.</td>
<td></td>
</tr>
<tr>
<td>The printer head may be damaged or worn out. Servicing required.</td>
<td>–</td>
</tr>
<tr>
<td>Unable to recognize the medium.</td>
<td></td>
</tr>
<tr>
<td>Check the format of the medium. If necessary, format the medium.</td>
<td>9.2</td>
</tr>
<tr>
<td>The medium may be damaged.</td>
<td>–</td>
</tr>
<tr>
<td>Unable to save data to the selected medium.</td>
<td></td>
</tr>
<tr>
<td>If necessary, format the storage medium.</td>
<td>9.2</td>
</tr>
<tr>
<td>Check the free space on the medium. Remove unnecessary files as necessary or use a new medium.</td>
<td>9.2</td>
</tr>
<tr>
<td>Unable to set or control the instrument via the communication interface.</td>
<td></td>
</tr>
<tr>
<td>Check that the GP-IB address or the parameter settings of the serial interface satisfy the specifications.</td>
<td>–*2</td>
</tr>
<tr>
<td>Check that the interface satisfies the electrical and mechanical specifications.</td>
<td>–*2</td>
</tr>
</tbody>
</table>

*1 See the Expansion Function User’s Manual IM760301-51E.
*2 See the Communication Interface User’s Manual IM760301-17E.
11.2 Error Messages and Corrective Actions

Error Messages

There are cases in which error messages are displayed on the screen during operation. This section describes the meanings of the messages and their corrective actions. The messages can be displayed either in English or Japanese (see section 3.18). If the corrective action requires servicing, contact your nearest YOKOGAWA dealer for repairs.

In addition to the error messages listed below, there are communication error messages. These messages are described in the Communication Interface User's Manual (IM760301-17E).

Error in Execution

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Corrective Action</th>
<th>Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Cannot measure PLL frequency.</td>
<td>Check input level.</td>
<td>–</td>
</tr>
<tr>
<td>601</td>
<td>Invalid file name.</td>
<td>Check the file name.</td>
<td>9.3, 9.4</td>
</tr>
<tr>
<td>602, 603</td>
<td>No USB device or no storage media inserted.</td>
<td>Check the USB device connection, and the existence of a storage medium in the device.</td>
<td>9.1</td>
</tr>
<tr>
<td>604</td>
<td>Media failure.</td>
<td>Check the storage medium.</td>
<td>–</td>
</tr>
<tr>
<td>605</td>
<td>File not found.</td>
<td>Check the file name and the storage medium.</td>
<td>–</td>
</tr>
<tr>
<td>606</td>
<td>Media is protected.</td>
<td>Set the disk’s (medium’s) write protect switch to OFF.</td>
<td>–</td>
</tr>
<tr>
<td>607</td>
<td>Media was removed while accessing.</td>
<td>Check the storage medium.</td>
<td>–</td>
</tr>
<tr>
<td>608, 609</td>
<td>File already exists.</td>
<td>–</td>
<td>9.3</td>
</tr>
<tr>
<td>610</td>
<td>Contains invalid characters.</td>
<td>–</td>
<td>9.3</td>
</tr>
<tr>
<td>611, 612</td>
<td>Media full.</td>
<td>Delete unnecessary file(s) or use another disk.</td>
<td>9.2 to 9.7</td>
</tr>
<tr>
<td>613</td>
<td>Cannot delete a directory if there are files in the directory.</td>
<td>Delete all the files in the directory to be deleted.</td>
<td>9.7</td>
</tr>
<tr>
<td>614</td>
<td>File is protected.</td>
<td>–</td>
<td>9.6</td>
</tr>
<tr>
<td>615</td>
<td>Physical format error.</td>
<td>Reformat the medium. If the same error occurs, the instrument is probably unable to execute a format on this medium.</td>
<td>9.2</td>
</tr>
<tr>
<td>616 to 620</td>
<td>File system failure.</td>
<td>Check using another disk. If the same message still appears, maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>621</td>
<td>File is damaged.</td>
<td>Check the file.</td>
<td>–</td>
</tr>
<tr>
<td>622 to 641</td>
<td>File system failure.</td>
<td>Check using another disk. If the same message still appears, maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>643 to 653</td>
<td>Media failure.</td>
<td>Check the medium.</td>
<td>–</td>
</tr>
<tr>
<td>655 to 664</td>
<td>File system failure.</td>
<td>Check using another disk. If the same message still appears, maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>665</td>
<td>Cannot load this file format. File was stored on other models or other versions.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>666</td>
<td>File is now being accessed.</td>
<td>Execute after access is made.</td>
<td>–</td>
</tr>
<tr>
<td>671</td>
<td>Save data not found.</td>
<td>Check for presence of data.</td>
<td>9.3, 9.4</td>
</tr>
<tr>
<td>674</td>
<td>Initializing file system.</td>
<td>Please wait.</td>
<td>9.2</td>
</tr>
<tr>
<td>675</td>
<td>Cannot load this file.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>679</td>
<td>Printer error.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>680</td>
<td>Close the cover of the printer unit.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>681</td>
<td>Paper empty.</td>
<td>Load a roll chart.</td>
<td>–</td>
</tr>
</tbody>
</table>

* See the Communication Interface User’s Manual IM760301-17E.
11.2 Error Messages and Corrective Actions

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Corrective Action</th>
<th>Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>682,</td>
<td>Printer over heat.</td>
<td>Power off immediately.</td>
<td>–</td>
</tr>
<tr>
<td>683</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>No built-in printer on this model.</td>
<td>Check the specifications to see whether or not the optional printer is provided.</td>
<td>Page ii</td>
</tr>
<tr>
<td>685</td>
<td>Printer time out.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>705</td>
<td>Can not operate while accessing medium.</td>
<td>Wait until access has completed.</td>
<td>–</td>
</tr>
<tr>
<td>706</td>
<td>Can not operate during hard copy.</td>
<td>Wait until output has completed.</td>
<td>–</td>
</tr>
<tr>
<td>710</td>
<td>File not found.</td>
<td>Check the file.</td>
<td>–</td>
</tr>
<tr>
<td>711</td>
<td>File operation not allowed during hard copy.</td>
<td>Wait until the hard copy completes.</td>
<td>–</td>
</tr>
<tr>
<td>712</td>
<td>Can not compress this hardcopy image.</td>
<td>Turn off compression switch.</td>
<td>9.4</td>
</tr>
<tr>
<td>750</td>
<td>Cannot connect to the ftp server.</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>751</td>
<td>Has not connect with ftp server yet.</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>752</td>
<td>This ftp function in not supported.</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>753</td>
<td>FTP Error: Pwd</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>754</td>
<td>FTP Error: Cwd</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>755</td>
<td>FTP Error: Rm</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>756</td>
<td>FTP Error: List</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>757</td>
<td>FTP Error: Mkdir</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>758</td>
<td>FTP Error: Rmdir</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>759</td>
<td>FTP Error: Get</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>760</td>
<td>FTP Error: Put</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>761</td>
<td>FTP Error: GetData</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>762</td>
<td>FTP Error: PutData</td>
<td>Confirm the network settings, connection, and disk capacity.</td>
<td>–*1</td>
</tr>
<tr>
<td>763</td>
<td>FTP Error: AppendData</td>
<td>Confirm the network settings, connection, and disk capacity.</td>
<td>–*1</td>
</tr>
<tr>
<td>764</td>
<td>FTP Error: Client Handle</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>765</td>
<td>FTP Error: Others</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>770</td>
<td>Failed to acquire time from SNTP server.</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>785</td>
<td>Cannot send data to a network printer.</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>786</td>
<td>Cannot send a mail.</td>
<td>Confirm the network settings and connection.</td>
<td>–*1</td>
</tr>
<tr>
<td>797</td>
<td>Connecting to a NetDrive.</td>
<td>Wait until connection has been established.</td>
<td>–</td>
</tr>
<tr>
<td>798</td>
<td>Failed to initialize network.</td>
<td>Confirm the network settings.</td>
<td>–*2</td>
</tr>
<tr>
<td>799</td>
<td>The second time password input is different from the first time.</td>
<td>Please repeat the second time password input.</td>
<td>–*2</td>
</tr>
</tbody>
</table>

*1 See the [Expansion Function User’s Manual IM760301-51E](#).

*2 See the [Communication Interface User’s Manual IM760301-17E](#).

Error in Setting

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Corrective Action</th>
<th>Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>Illegal date-time.</td>
<td>Set the correct date and time.</td>
<td>3.12</td>
</tr>
<tr>
<td>801</td>
<td>Illegal file name.</td>
<td>The file name contains characters which are not allowed or the file name is not a valid MS-DOS file name. Enter another file name.</td>
<td>9.3</td>
</tr>
<tr>
<td>802</td>
<td>Cannot be set or executed in the Normal measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>803</td>
<td>Cannot be set or executed in the IEC Harmonics measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>804</td>
<td>Cannot be set or executed in the Wide-Band Harmonics measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>805</td>
<td>Cannot be set or executed in the Math measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
11.2 Error Messages and Corrective Actions

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Corrective Action</th>
<th>Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>806</td>
<td>Cannot be set or executed in the FFT measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>807</td>
<td>Cannot be set or executed in the Cycle by Cycle measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>808</td>
<td>Cannot change this parameter during numerical display.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>809</td>
<td>Cannot change this parameter during vector display.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>810</td>
<td>Cannot change this parameter during bar graph display.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>812</td>
<td>Cannot be set while storing/recalling of data being performed.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>813</td>
<td>Cannot be set while integration is running.</td>
<td>Reset Integration.</td>
<td>5.14</td>
</tr>
<tr>
<td>820</td>
<td>Cannot be set or executed in the Flicker measurement mode.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>821</td>
<td>Attempt made to start flicker measurement while flicker initialization is not finished.</td>
<td>Wait for the initialization to finish and the WT3000 to become ready. Then, start the measurement.</td>
<td>–*</td>
</tr>
<tr>
<td>822</td>
<td>Attempt made to start flicker measurement while flicker measurement is in progress or result of flicker judgement is displayed.</td>
<td>Reset the flicker measurement, wait for the initialization to finish, and start the measurement.</td>
<td>–*</td>
</tr>
<tr>
<td>823</td>
<td>Cannot change during CAL.</td>
<td>Wait until CAL is completed.</td>
<td>10.1</td>
</tr>
<tr>
<td>824</td>
<td>Attempt made to initialize flicker measurement while flicker measurement is in progress or result of flicker judgement is displayed.</td>
<td>Reset the flicker measurement and then execute initialization.</td>
<td>–*</td>
</tr>
<tr>
<td>825</td>
<td>Cannot change limit settings while flicker measurement is in progress.</td>
<td>Can be changed only when the measurement is reset or while the judgement result is being displayed.</td>
<td>–*</td>
</tr>
<tr>
<td>826</td>
<td>Cannot be set or executed when flicker measurement is not reset.</td>
<td>Reset the flicker measurement.</td>
<td>–*</td>
</tr>
<tr>
<td>827</td>
<td>Illegal math expression.</td>
<td>Input a correct computing equation.</td>
<td>5.4</td>
</tr>
<tr>
<td>828</td>
<td>Cannot start flicker measurement when all periods of dmax measurement are finished.</td>
<td>Perform judgement or move the observation period if necessary and measure again.</td>
<td>–*</td>
</tr>
<tr>
<td>829</td>
<td>Cannot judge flicker measurement until all periods of dmax measurement are finished.</td>
<td>Perform judgement after the dmax measurement of all observation periods is finished.</td>
<td>–*</td>
</tr>
<tr>
<td>830</td>
<td>Cannot move period while flicker measurement is not ready.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>831</td>
<td>Processing now.</td>
<td>Retry setting or execution again.</td>
<td>–*</td>
</tr>
<tr>
<td>836</td>
<td>Cannot be set or executed while Cycle by Cycle measurement is not reset.</td>
<td>Reset the cycle-by-cycle measurement.</td>
<td>–*</td>
</tr>
<tr>
<td>841</td>
<td>Attempted to start integration after integration time has reached its preset value.</td>
<td>Reset Integration.</td>
<td>5.14</td>
</tr>
<tr>
<td>842</td>
<td>Attempted to start integration while integration is in progress.</td>
<td>–</td>
<td>5.14</td>
</tr>
<tr>
<td>843</td>
<td>Measurement stopped due to overflow during integration or due to a power failure.</td>
<td>Reset Integration.</td>
<td>5.14</td>
</tr>
<tr>
<td>844</td>
<td>Attempted to stop integration even though integration was not in progress.</td>
<td>–</td>
<td>5.14</td>
</tr>
<tr>
<td>845</td>
<td>Attempted to start integration while integration was in progress or integration mode was not selected.</td>
<td>–</td>
<td>5.14</td>
</tr>
<tr>
<td>846</td>
<td>Attempted to start integration while measurement of peak overflow was in progress.</td>
<td>–</td>
<td>5.14</td>
</tr>
<tr>
<td>847</td>
<td>Attempted to start integration in continuous integration mode when integration preset time was set to “0”.</td>
<td>–</td>
<td>5.11</td>
</tr>
<tr>
<td>Code</td>
<td>Message</td>
<td>Corrective Action</td>
<td>Reference Section</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>848</td>
<td>Attempted made to start integration in real time counting integration mode when the end time had already passed.</td>
<td>–</td>
<td>5.12</td>
</tr>
<tr>
<td>849</td>
<td>Attempted made to start storing in real time counting storing mode when the end time had already passed.</td>
<td>–</td>
<td>8.3</td>
</tr>
<tr>
<td>850</td>
<td>Stored file already exists. Initialize memory before storing.</td>
<td>–</td>
<td>8.4</td>
</tr>
<tr>
<td>851</td>
<td>Stored file and measurement mode are different. Set the appropriate measurement mode before recalling.</td>
<td>–</td>
<td>8.3</td>
</tr>
<tr>
<td>852</td>
<td>Stored file is illegal. Initialize memory before storing.</td>
<td>–</td>
<td>8.4</td>
</tr>
<tr>
<td>853</td>
<td>Cannot be executed/set during Recall mode. Set the Mode to Store.</td>
<td>–</td>
<td>8.1</td>
</tr>
<tr>
<td>854</td>
<td>Waveform display data not found.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>855</td>
<td>Storing memory is full. Storing has been stopped.</td>
<td>–</td>
<td>8.4</td>
</tr>
<tr>
<td>856</td>
<td>An error has occured while storing. Storing has been stopped.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>857</td>
<td>Cannot be set while Master/Slave Synchronized Measurement is set to Slave.</td>
<td>–</td>
<td>10.9</td>
</tr>
<tr>
<td>858</td>
<td>Store/Recall process is in progress now. Execute or set setting again.</td>
<td>–</td>
<td>8.4, 8.6</td>
</tr>
<tr>
<td>860</td>
<td>Cannot be set or executed while accessing Acquisition memory.</td>
<td>Wait until access has completed.</td>
<td>–</td>
</tr>
<tr>
<td>861</td>
<td>Acquisition data not found.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>862</td>
<td>Numeric data not found.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>864</td>
<td>This wiring cannot be set as the first selected element.</td>
<td>–</td>
<td>4.1</td>
</tr>
<tr>
<td>865</td>
<td>Cannot be set while integration is running. Stop or reset Integration.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>866</td>
<td>Cannot be set or executed while Auto Print is operating.</td>
<td>Turn off Auto Print from the [PRINT MENU] (SHIFT+PRINT) menu.</td>
<td>–</td>
</tr>
<tr>
<td>867</td>
<td>Auto Print is not in operation.</td>
<td>Start Auto Print from the [PRINT MENU] (SHIFT+PRINT).</td>
<td>–</td>
</tr>
<tr>
<td>868</td>
<td>Print out destination must be set to Built-in Printer in order to start Auto Print. Set [Print to] to Built-in from the [PRINT MENU] (SHIFT+PRINT) menu.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>869</td>
<td>Auto Print function is not supported in the current measurement mode or settings.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>870</td>
<td>Auto Print [Interval] setting is invalid. Set [Interval] time to an appropriate amount from the [PRINT MENU] (SHIFT+PRINT) -> [Auto Print Settings] menu.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>871</td>
<td>Attempted made to start Auto Print when the end time had already passed.</td>
<td>Set [End Time] to a future date & time from the [PRINT MENU] (SHIFT+PRINT) -> [Auto Print Settings] menu.</td>
<td>–</td>
</tr>
<tr>
<td>872</td>
<td>Auto print’s print-out has been canceled. The printer or file system is in action.</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* See the Communication Interface User’s Manual IM760301-17E.
11.2 Error Messages and Corrective Actions

Error in System Operation

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Corrective Action</th>
<th>Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>Failed to backup setup data.</td>
<td>The system has been initialized. Maintenance service is required.</td>
<td>3.4</td>
</tr>
<tr>
<td>902</td>
<td>System RAM failure.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>903</td>
<td>System ROM failure.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>904</td>
<td>System RAM failure.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>906</td>
<td>Fan stopped.</td>
<td>Power off immediately. Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>909</td>
<td>Illegal SUM value.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>910</td>
<td>RAM read/write error.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>911</td>
<td>Memory bus error.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>912</td>
<td>Fatal error in Communication-driver.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>914</td>
<td>Time out occurs in Communications.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>915</td>
<td>EEPROM SUM error.</td>
<td>EEPROM may be damaged. Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>919</td>
<td>Module installation condition and setup parameters do not match.</td>
<td>The system has been initialized. Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>921</td>
<td>System Failed to Draw Display.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>922</td>
<td>Failed in communication with DSP.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>923</td>
<td>Transmit data abnormality from DSP.</td>
<td>Maintenance service is required.</td>
<td>–</td>
</tr>
<tr>
<td>926</td>
<td>The USB device’s power consumption exceeded the capacity of the USB hub.</td>
<td>–</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Note

If the system is not operating correctly or if servicing is necessary, try initializing the WT3000. The WT3000 may recover.
11.3 Self-Test

Procedure

To exit the menu during operation, press ESC located above the soft keys.

In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

1. Press MISC to display the Misc menu.
2. Press the Selftest soft key to display the Selftest menu.
3. Press the Test Item soft key to display the Test Item menu.
4. Press the Memory or Key Board soft key to select the test item.

 If you select Memory, proceed to “Testing the Memory” on the next page.
 If you select Key Board, proceed to “Testing the Keys and the Keyboard” on the next page.

 To exit the menu during operation, press ESC located above the soft keys.

 In the procedural explanation below, the phrase “press the cursor keys” may be used. This phrase refers to the procedures for selecting items and entering values and character strings. For details on the procedures, see section 3.14.

 1. Press MISC to display the Misc menu.
 2. Press the Selftest soft key to display the Selftest menu.
 3. Press the Test Item soft key to display the Test Item menu.
 4. Press the Memory or Key Board soft key to select the test item.

 If you select Memory, proceed to “Testing the Memory” on the next page.
 If you select Key Board, proceed to “Testing the Keys and the Keyboard” on the next page.

 Note

 The time display at the lower right corner of the screen may not be updated during the self-test.

 • Testing the Memory
 5. Press the Memory Test soft key to display the Memory Test menu.
 6. Press the System or ACQ RAM soft key to select the memory to be tested.
 7. Press the Test Exec soft key to execute the memory test.
• Testing the Keys and the Keyboard
 • Testing the Keys
 5. Press the Test Exec soft key.
 6. Press a key on the front panel. The test for the pressed key is executed.
 7. Press the  or  cursor key. The indicator lights one by one each time an arrow key is pressed.
 8. Press ESC twice to exit from the key test.

• Testing the Keyboard
 10. Operate the keyboard. Check that the characters entered on the keyboard are correctly displayed in the entry box of the keyboard.

For keyboard operations, see section 3.14, “Entering Values and Strings.”

Explanation

• Memory Test
 Tests whether the internal ROM and RAM are operating correctly. If “Pass” is displayed, it is operating correctly. If “Failed” is displayed, contact your nearest YOKOGAWA dealer.
 • System: Tests the RAM in the CPU.
 • ACQ RAM: Tests the RAM that stores the waveform sampling data (acquisition data).

• Testing the Keys and Keyboard
 Tests whether the front panel keys are operating properly. If the name of the key being pressed appears on the screen, it is operating correctly.
 • If the indicator turns ON/OFF when the  or  cursor is pressed, the keys are operating correctly.
 • To exit from the key test, press ESC twice.
 • If the display is not correct, contact your nearest YOKOGAWA dealer.
11.4 Checking the System Condition

Procedure

1. Press MISC to display the Misc menu.
2. Press the System Overview soft key to display the System Overview window.

Explanation

Displaying the System Conditions
You can check the model, firmware version, element configuration, and installed options.
11.5 Replacing the Power Fuse

WARNING

- To prevent the possibility of fire, only use a fuse with the specified rating (voltage, current, and type).
- Be sure to turn OFF the instrument and unplug the power cord before replacing the fuse.
- Never short the fuse holder.

Fuse Rating

The power fuse used on this instrument is specified as follows:
- Maximum rated voltage: 250 V
- Maximum rated current: 6.3 A
- Type: Time lag
- Standard: UL/VDE certified
- Part number: A1463EF

Replacement Procedure

Replace the power fuse according to the procedure below.

1. Turn OFF the power switch.
2. Remove the power cord from the power connector.
3. Insert the tip of a flat-blade screw driver in the dented section of the fuse holder on the power connector side, turn it in the direction of the arrow, and pull out the fuse holder.
4. Remove the blown fuse that is attached to the tip of the fuse holder.
5. Attach a new fuse to the fuse holder and push the fuse holder back in the original place.
11.6 Recommended Replacement Parts

The three-year warranty applies only to the main unit of the instrument (starting from the
day of delivery) and does not cover any other items or expendable items (items which
wear out). The replacement period for expendable items varies depending on the
conditions of use. Refer to the table below as a general guideline. Contact your nearest
YOKOGAWA dealer to have parts replaced.

<table>
<thead>
<tr>
<th>Parts Name</th>
<th>Recommended Replacement Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in printer</td>
<td>Under normal usage, 200 rolls of printer paper (part No.: B9316FX)</td>
</tr>
<tr>
<td>LCD backlight</td>
<td>3 years</td>
</tr>
<tr>
<td>Cooling fan</td>
<td>3 years</td>
</tr>
<tr>
<td>Backup battery</td>
<td>3 years</td>
</tr>
<tr>
<td>(Lithium battery)</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 12 Specifications

12.1 Input Section

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input terminal type</td>
<td>Voltage
Plug-in terminal (safety terminal)
Current
• Direct input: Large binding post
• Current sensor input: Isolated BNC connector</td>
</tr>
<tr>
<td>Input format</td>
<td>Voltage
Floating input, resistive voltage divider
Current
Floating input, shunt input</td>
</tr>
<tr>
<td>Measurement range</td>
<td>Voltage
• When the crest factor is set to 3: 15 V, 30 V, 100 V, 150 V, 300 V, 600 V, and 1000 V
• When the crest factor is set to 6: 7.5 V, 15 V, 30 V, 50 V, 75 V, 150 V, 300 V, and 500 V
Current (2-A input element)
• Direct input:
• 5 mA, 10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 mA, 1 A, or 2 A when the crest factor is set to 3.
• 2.5 mA, 5 mA, 10 mA, 25 mA, 50 mA, 100 mA, 250 mA, 500 mA, 1 A when the crest factor is set to 6.
• External sensor input:
• When the crest factor is set to 3: 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, and 10 V
• When the crest factor is set to 6: 25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, and 5 V
Current (30-A input element)
• Direct input:
• When the crest factor is set to 3: 500 mA, 1 A, 2 A, 5 A, 10 A, 20 A, and 30 A
• When the crest factor is set to 6: 250 mA, 500 mA 1 A, 2.5 A 5 A, 10 A, and 15 A
• External sensor input:
• When the crest factor is set to 3: 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, and 10 V
• When the crest factor is set to 6: 25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, and 5 V</td>
</tr>
<tr>
<td>Input impedance</td>
<td>Voltage
Input resistance: Approx. 10 MΩ, input capacitance: Approx. 5 pF
Current (2-A input element)
• Direct input: Approx. 500 mΩ + approx. 0.07 µH
• External sensor input: Input resistance: Approx. 1 MΩ, input capacitance: Approx. 40 pF
Current (30-A input element)
• Direct input: Approx. 5.5 mΩ + approx. 0.03 µH
• External sensor input: Input resistance: Approx. 1 MΩ, input capacitance: Approx. 40 pF</td>
</tr>
<tr>
<td>Instantaneous maximum allowable input (1s or less)</td>
<td>Voltage
Peak value of 2500 V or RMS value of 1500 V, whichever is less.
Current (2-A input element)
• Direct input: Peak value of 9 A or RMS value of 3 A, whichever is less.
• External sensor input: Peak value less than or equal to 10 times the measurement range.
Current (30-A input element)
• Direct input: Peak value of 150 A or RMS value of 50 A, whichever is less.
• External sensor input: Peak value less than or equal to 10 times the measurement range.</td>
</tr>
<tr>
<td>Continuous maximum allowable input</td>
<td>Voltage
Peak value of 1600 V or RMS value of 1100 V, whichever is less.
Current (2-A input element)
• Direct input: Peak value of 6 A or RMS value of 2.2 A, whichever is less.
• External sensor input: Peak value less than or equal to 5 times the measurement range.
Current (30-A input element)
• Direct input: Peak value of 90 A or RMS value of 33 A, whichever is less.
• External sensor input: Peak value less than or equal to 5 times the measurement range.</td>
</tr>
</tbody>
</table>
12.1 Input Section/12.2 Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| Continuous maximum common mode voltage (50/60 Hz) | Voltage input terminals: 1000Vrms
Current input terminals*: 1000 Vrms (maximum allowable voltage that can be measured)
600 Vrms (rating voltage of EN61010-2-030)
External current sensor input connector: 600 Vrms |
| Influence from common | When 1000 Vrms is applied with the voltage input terminals shorted and current input terminals open.
- 50/60Hz: ±0.01% of range or less.
- Up to 200 kHz (reference value)
 Voltage: ±3/range × f% of range or less
 Direct current input and external current sensor input: ±(maximum range/range) × 0.001 × f% of range or less
 Except, 0.01% or greater. The unit of frequency f is kHz. The maximum range in an equation is 30 A or 10 V. |
| Line filter | Select OFF, 500 Hz, 5.5 kHz, or 50 kHz. |
| Frequency filter | Select On or Off. |
| Range switching | Can be set for each element. |
| Auto range function | Range Increase
- When U or I exceeds 110% of the rated range
- When the peak value of the input signal exceeds approximately 330% of the rated range (approximately 660% when the crest factor is set to 6)
Range decrease
When U or I is less than or equal to 30% of the rated range and Upk or Ipk is less than or equal to 300% of the lower range (approximately 600% when the crest factor is set to 6) |
| Rated voltage to ground | Voltage input terminals: 1000V
Current input terminals*: 1000 V (maximum allowable voltage that can be measured)
600 V (rating voltage of EN61010-2-030)
External current sensor input connector: 600 V |

* Do not touch the inside of the external current sensor input BNC connector.

12.2 Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>8.4" color TFT LCD monitor</td>
</tr>
<tr>
<td>Display resolution of the entire screen*</td>
<td>640 (H) × 480 (V) dots</td>
</tr>
<tr>
<td>Display resolution of the waveform display</td>
<td>501 (H) × 432 (V) dots</td>
</tr>
<tr>
<td>Display update interval</td>
<td>See section 12.5.</td>
</tr>
</tbody>
</table>

* The LCD screen may contain 0.02% defects with respect to the total number of pixels.
12.3 Measurement Functions (Measurement Items) Related to Normal Measurement

Measurement Functions Determined for Each Input Element

For details on the determination and equations of measurement functions, see appendix 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>Urms: true rms value, Umn: rectified mean value calibrated to the rms value, Udc: simple average, Urmn: rectified mean value</td>
</tr>
<tr>
<td>Current (A)</td>
<td>Irms: true rms value, Imn: rectified mean value calibrated to the rms value, Idc: simple average, Irmn: rectified mean value</td>
</tr>
<tr>
<td>Active power (W)</td>
<td>P</td>
</tr>
<tr>
<td>Apparent power (VA)</td>
<td>S</td>
</tr>
<tr>
<td>Reactive power (var)</td>
<td>Q</td>
</tr>
<tr>
<td>Power factor</td>
<td>λ</td>
</tr>
<tr>
<td>Phase difference (°)</td>
<td>ϕ</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>fU (FreqU): voltage frequency, fI (FreqI): current frequency. Two frequencies from the fU and fI of all installed elements can be measured simultaneously. On the model with the frequency measurement add-on option, the fU and fI of all elements can be measured simultaneously. The display of signals that are not selected shows [--------] (no data).</td>
</tr>
<tr>
<td>Voltage max. and min. (V)</td>
<td>U+pk: Voltage maximum, U-pk: Voltage minimum</td>
</tr>
<tr>
<td>Current max. and min. (A)</td>
<td>I+pk: Current maximum, I-pk: Current minimum</td>
</tr>
<tr>
<td>Crest factor</td>
<td>CfU: Voltage crest factor, CfI: Current crest factor</td>
</tr>
</tbody>
</table>

However, the ampere hour is integrated by selecting Irms, Imn, Idc, or Irmn through the current mode setting.
12.3 Measurement Functions (Measurement Items) Related to Normal Measurement

Measurement Functions (Σ Functions) Determined for Each Wiring Unit (ΣA and ΣB)

For details on the determination and equations of Σ functions, see appendix 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>U_rmsΣ: true rms value, U_mnΣ: rectified mean value calibrated to the rms value, U_dΣ: simple average, U_rmnΣ: rectified mean value</td>
</tr>
<tr>
<td>Current (A)</td>
<td>I_rmsΣ: true rms value, I_mnΣ: rectified mean value calibrated to the rms value, I_dΣ: simple average, I_rmnΣ: rectified mean value</td>
</tr>
<tr>
<td>Active power (W)</td>
<td>PΣ</td>
</tr>
<tr>
<td>Apparent power (VA)</td>
<td>SΣ</td>
</tr>
<tr>
<td>Reactive power (var)</td>
<td>ΩΣ</td>
</tr>
<tr>
<td>Power factor</td>
<td>λS</td>
</tr>
<tr>
<td>Phase difference (°)</td>
<td>φS</td>
</tr>
</tbody>
</table>

Integration

- Time: Integration time
- WPΣ: Sum of positive and negative watt hours
- WP+Σ: Sum of positive P (consumed watt hour)
- WP-Σ: Sum of negative P (watt hour returned to the power supply)
- qΣ: Sum of positive and negative ampere hours
- q+Σ: Sum of positive I (ampere hour)
- q-Σ: Sum of negative I (ampere hour)
- WΣ: Integration of SΣ
- WQΣ: Integration of QΣ

For details on the measurement functions of motor evaluation, see section 1.10 in the *Expansion Function User's Manual IM760301-51E*.

For details on the measurement functions of harmonic measurement, see section 7.11 in the *Expansion Function User’s Manual IM760301-51E*.
12.4 Accuracy

Voltage and Current Accuracy

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (accuracy at 6 months)</td>
<td>Conditions
Temperature: 23±5°C. Humidity: 30 to 75% RH. Input waveform: Sine wave. Common-mode voltage: 0 V. Line filter: OFF. λ (power factor): 1. Crest factor: 3. After warm-up time has passed. Wired condition after zero-level compensation or measurement range change. f is the frequency.</td>
</tr>
<tr>
<td>Frequency</td>
<td>Accuracy $(\text{reading error} + \text{measurement range error})$</td>
</tr>
<tr>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>• Voltage input</td>
<td>0.05% of reading + 0.05% of range</td>
</tr>
<tr>
<td>• Current sensor input</td>
<td></td>
</tr>
<tr>
<td>• Current of a 30-A input element from direct input</td>
<td></td>
</tr>
<tr>
<td>• Current of a 2-A input element from direct input</td>
<td>0.05% of reading + 0.05% of range + 2 μA</td>
</tr>
<tr>
<td>0.1 Hz \leq f $<$ 30 Hz</td>
<td>0.1% of reading + 0.2% of range</td>
</tr>
<tr>
<td>30 Hz \leq f $<$ 45 Hz</td>
<td>0.03% of reading + 0.05% of range</td>
</tr>
<tr>
<td>45 Hz \leq f \leq 66 Hz</td>
<td></td>
</tr>
<tr>
<td>• Voltage input</td>
<td>0.01% of reading + 0.03% of range</td>
</tr>
<tr>
<td>• Current sensor input</td>
<td></td>
</tr>
<tr>
<td>• Current of a 30-A input element from direct input</td>
<td></td>
</tr>
<tr>
<td>• Current of a 2-A input element from direct input at the 500 mA to 2 A range</td>
<td></td>
</tr>
<tr>
<td>• Current of a 2-A input element from direct input at the 5 mA to 200 mA range</td>
<td>0.03% of reading + 0.05% of range</td>
</tr>
<tr>
<td>66 Hz $<$ f \leq 1 kHz</td>
<td>0.03% of reading + 0.05% of range</td>
</tr>
<tr>
<td>1 kHz $<$ f \leq 10 kHz</td>
<td>0.1% of reading + 0.05% of range</td>
</tr>
<tr>
<td>10 kHz $<$ f \leq 50 kHz</td>
<td>0.3% of reading + 0.1% of range</td>
</tr>
<tr>
<td>50 kHz $<$ f \leq 100 kHz</td>
<td>0.012 x f% of reading + 0.2% of range</td>
</tr>
<tr>
<td>100 kHz $<$ f \leq 500 kHz</td>
<td>0.009 x f% of reading + 0.5% of range</td>
</tr>
<tr>
<td>500 kHz $<$ f \leq 1 MHz</td>
<td>(0.22 x f – 7)% of reading + 1% of range</td>
</tr>
</tbody>
</table>

* Add 3% of range (reference value) to the above accuracy figure for the accuracy of the waveform display data, U_{pk} and I_{pk}. However, for external sensor input, add 3% of range + 5 mV (reference value). The effective input range is within \pm300% of the range (within \pm600% of the range if the crest factor is set to 6).
* For temperature changes after zero level compensation or range change, add 50 ppm of range/°C to the DC accuracy of the voltage.
* For temperature changes after zero level compensation or range change, add the following values to the DC accuracy of the direct current input.
 - 2-A input element: 3 μA/°C
 - 30-A input element: 0.2 mA/°C
* For temperature changes after zero-level compensation or range change on the external current sensor input, add 0.02 mV/°C to the DC accuracy of the external current sensor input.
* For self-generated heat caused by current input on an AC input signal, add the following values to the current accuracy.
 - 2-A input element: 0.004 x f% of reading
 - 30-A input element: 0.00002 x f% of reading
* For self-generated heat caused by current input on a DC input signal, add the following values to the current accuracy.
 - 2-A input element: 0.004 x f% of reading + 6 x I2 μA
 - 30-A input element: 0.00002 x f% of reading + 3 x I2 μA
 I is the current reading (A). The influence from self-generated heat continues until the temperature of the shunt resistor inside the WT3000 lowers even if the current input changes to a small value.
* When the data update interval is 50 ms, add 0.1% of reading to all accuracy figures.
* When the data update interval is 100 ms, add 0.05% of reading to all accuracy figures.

* The unit of f in the read error equation is kHz.
12.4 Accuracy

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• All accuracy figures for 0.1 to 10 Hz are reference values.</td>
<td></td>
</tr>
<tr>
<td>• The voltage accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.</td>
<td></td>
</tr>
<tr>
<td>• The voltage accuracy figure for 100 kHz to 1 MHz when the voltage (V) exceeds $2.2 \times 10^5 f \ (kHz)$ are reference values.</td>
<td></td>
</tr>
<tr>
<td>• The current accuracy figures for DC, 10 Hz to 45 Hz, and 400 Hz to 200 kHz when the current exceeds 20 A are reference values.</td>
<td></td>
</tr>
<tr>
<td>• The current accuracy figures for 200 kHz to 500 kHz when the current exceeds 10 A are reference values.</td>
<td></td>
</tr>
<tr>
<td>• The current accuracy figures for 500 kHz to 1 MHz when the current exceeds 5 A are reference values.</td>
<td></td>
</tr>
</tbody>
</table>

Effective input range

- 0 to $\pm 130\%$ of the measurement range for U_{dc} and I_{dc}.
- 1 to 130% of the measurement range for U_{rms} and I_{rms}. (2% to 130% if the crest factor is set to 6)
- 10 to $\pm 130\%$ of the measurement range for U_{mn} and I_{mn}.
- However, if the data update interval is 50 ms, 100 ms, 5 s, 10 s, or 20 s, the signal level of the synchronization source must satisfy the input signal level of frequency measurement (see section 12.5).
- * 110% for the maximum range of direct voltage and current inputs. The accuracy for 110% to 130% of the measurement range is reading error $\times 1.5$.

Maximum display

140% of the rated voltage or current range.

Minimum display

- Down to 0.3% of the measurement range for U_{rms} and I_{rms} (0.6% if the crest factor is set to 6).
- Down to 1% of the measurement range for U_{mn}, U_{rn}, I_{mn}, and I_{rn} (2% if the crest factor is set to 6).
- Values less than or equal to these figures are fixed to zero (suppressed to zero). The integrated current q is dependent on the current value.

Lower limit of measurement frequency

<table>
<thead>
<tr>
<th>Data update interval</th>
<th>50 ms</th>
<th>100 ms</th>
<th>250 ms</th>
<th>500 ms</th>
<th>1 s</th>
<th>2 s</th>
<th>5 s</th>
<th>10 s</th>
<th>20 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower limit of measurement frequency</td>
<td>45 Hz</td>
<td>25 Hz</td>
<td>20 Hz</td>
<td>10 Hz</td>
<td>5 Hz</td>
<td>2 Hz</td>
<td>0.5 Hz</td>
<td>0.2 Hz</td>
<td>0.1 Hz</td>
</tr>
</tbody>
</table>

Line filter influence

- When the cut-off frequency is 500 Hz
 - $45 \ Hz \leq f \leq 66 \ Hz$: Add 0.2% of reading.
 - $f < 45 \ Hz$: Add 0.5% of reading.
- When the cut-off frequency is 5.5 kHz
 - $f \leq 66 \ Hz$: Add 0.2% of reading.
 - $66 \ Hz < f \leq 500 \ Hz$: Add 0.5% of reading.
- When the cut-off frequency is 50 kHz
 - $f \leq 500 \ Hz$: Add 0.2% of reading.
 - $500 \ Hz < f \leq 5 \ kHz$: Add 0.5% of reading.

Conditions for detecting lead and lag

- Lead and lag are detected correctly when the voltage and current signals are both sine waves, the amplitude is greater than or equal to 50% (greater than or equal to 100% if the crest factor is set to 6) of the measurement range, the frequency is between 20 Hz and 10 kHz, and the phase difference is between $\pm 5^\circ$ and 175°.

Temperature coefficient

Add $\pm 0.02\%$ of reading$^\circ\ C$ in the range 5 to 18$^\circ\ C$ or 28 to 40$^\circ\ C$.

One year accuracy

Add (reading error of accuracy at 6 months $\times 0.5$) to the accuracy at 6 months.

Accuracy when the crest factor is set to 6

Same as the accuracy when the crest factor is 3 after doubling the measurement range.
12.4 Accuracy

Power Accuracy

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (accuracy at 6 months)</td>
<td>Conditions Same as the conditions for voltage and current.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>±(reading error + measurement range error)</td>
<td></td>
</tr>
</tbody>
</table>

- **Voltage input**
 - Current of a 30-A input element from direct input: 0.05% of reading + 0.1% of range
 - Current of a 2-A input element from direct input: 0.05% of reading + 0.1% of range + 2 µA \times \text{voltage reading}

<table>
<thead>
<tr>
<th>0.1 Hz ≤ f < 30 Hz</th>
<th>0.2% of reading + 0.3% of range</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Hz ≤ f < 45 Hz</td>
<td>0.05% of reading + 0.05% of range</td>
</tr>
<tr>
<td>45 Hz ≤ f ≤ 66 Hz</td>
<td></td>
</tr>
</tbody>
</table>
 - Current sensor input: 0.02% of reading + 0.04% of range
 - Current of a 30-A input element from direct input: 0.004 \times I^2% of reading
 - Current of a 2-A input element from direct input at the 500 mA to 2 A range: 0.00002 \times I^2% of reading
 - Current of a 2-A input element from direct input at the 5 mA to 200 mA range: 0.004 \times I^2% of reading + 6 \times I^2 \mu A

<table>
<thead>
<tr>
<th>66 Hz < f ≤ 1 kHz</th>
<th>0.05% of reading + 0.05% of range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kHz < f ≤ 10 kHz</td>
<td>0.15% of reading + 0.1% of range</td>
</tr>
<tr>
<td>10 kHz < f ≤ 50 kHz</td>
<td>0.3% of reading + 0.2% of range</td>
</tr>
<tr>
<td>50 kHz < f ≤ 100 kHz</td>
<td>0.014 \times f% of reading + 0.3% of range</td>
</tr>
<tr>
<td>100 kHz < f ≤ 500 kHz</td>
<td>0.012 \times f% of reading + 1% of range</td>
</tr>
<tr>
<td>500 kHz < f ≤ 1 MHz</td>
<td>(0.048 \times f – 19)% of reading + 2% of range</td>
</tr>
</tbody>
</table>

- The unit of f in the read error equation is kHz.

- For temperature changes after zero level compensation or range change, add (voltage influence) \times (current influence) to the DC accuracy. For details on voltage and current influence, see page 12-5.
- For self-generated heat caused by current input on an AC input signal, add the following values to the power accuracy.
 - 2-A input element: 0.004 \times I^2% of reading
 - 30-A input element: 0.00002 \times I^2% of reading
- For self-generated heat caused by current input on a DC input signal, add the following values to the power accuracy.
 - 2-A input element: 0.004 \times I^2% of reading + 6 \times I^2 \mu A
 - 30-A input element: 0.00002 \times I^2% of reading + 3 \times I^2 \mu A

I is the current reading (A). The influence from self-generated heat continues until the temperature of the shunt resistor inside the WT3000 lowers even if the current input changes to a small value.

- When the data update interval is 50 ms, add 0.1% of reading to all accuracy figures.
- When the data update interval is 100 ms, add 0.05% of reading to all accuracy figures.
- All accuracy figures for 0.1 to 10 Hz are reference values.
- The power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.
- The power accuracy figures for 100 kHz to 1 MHz when the voltage (V) exceeds \(2.2 \times 10^5\) f (kHz) are reference values.
- The power accuracy figures for DC, 10 Hz to 45 Hz, and 400 Hz to 200 kHz when the current exceeds 20 A are reference values.
- The power accuracy figures for 200 kHz to 500 kHz when the current exceeds 10 A are reference values.
- The power accuracy figures for 500 kHz to 1 MHz when the current exceeds 5 A are reference values.
12.4 Accuracy

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| Effective input range | • 0 to ±130% of the power range (see section 5.2) for DC measurement.
• ±130% of the power range for current measurement when the voltage and current are in the range of 1 to 130% of the measurement range. However, if the data update interval is 50 ms, 100 ms, 5 s, 10 s, or 20 s, the signal level of the synchronization source must satisfy the input signal level of frequency measurement (see section 12.5).
• 110% for the maximum range of direct voltage and current inputs. The accuracy for 110% to 130% of the measurement range is reading error × 1.5. |
| Lower limit of measurement frequency | Same as the lower limit of measurement frequency for voltage and current. |
| Power factor (\(\lambda\)) influence | • When \(\lambda = 0\)
• 5 mA to 200 mA range of a 2-A input element
 • Apparent power reading × 0.1% in the range of 45 to 66 Hz.
 • For other frequency ranges, see below. However, the figures are reference values.
 • 500 mA to 2 A range of a 2-A input element or 30-A input element
 • Apparent power reading × 0.03% in the range of 45 to 66 Hz.
 • For other frequency ranges, see below. However, the figures are reference values.
 • Add apparent power reading × (0.03 + 0.05 × \(f\) (kHz))%
• When 0 < \(\lambda\) < 1
 • Add apparent power reading × \((\text{power range error %}) + \text{(power range/apparent power indication value)} + (\text{influence when } \lambda = 0))\%\) where \(\phi\) is the phase angle between the voltage and current. |
| Line filter influence | When the cut-off frequency is 500 Hz
 45 Hz < \(f\) < 66 Hz: Add 0.3% of reading.
 45 Hz < \(f\) < 500 Hz: Add 1% of reading.
When the cut-off frequency is 5.5 kHz
 \(f\) ≤ 66 Hz: Add 0.3% of reading.
 66 Hz < \(f\) ≤ 500 Hz: Add 1% of reading.
When the cut-off frequency is 50 kHz
 \(f\) ≤ 500 Hz: Add 0.3% of reading.
 500 < \(f\) ≤ 5 kHz: Add 1% of reading. |
| Temperature coefficient | Same as the temperature coefficient for voltage and current. |
| One year accuracy | Add (reading error of accuracy at 6 months × 0.5) to the accuracy at 6 months. |
| Accuracy when the crest factor is set to 6 | Accuracy obtained by doubling the measurement range error for the accuracy when the crest factor is set to 3 |

Accuracy of Other Parameters and Computation Accuracy

- **Accuracy of apparent power**
 Voltage accuracy + current accuracy
- **Accuracy of reactive power**
 \(\text{Accuracy of apparent power +} \sqrt{(1 - \lambda^2)}\%\) of range
- **Accuracy of power factor**
 \(\lambda\)
 \(= \sqrt{(1 - \lambda^2)}\)
 \(\pm 1\) digit when voltage and current is at rated input of the measurement range
 \(\pm 1\) digit when voltage and current is at rated input of the measurement range
- **Accuracy of phase difference**
 \(\phi\)
 \(= \sqrt{(1 - \lambda^2)}\)
 \(\pm 1\) digit when voltage and current is at rated input of the measurement range
- For the accuracy of frequency \(f_U\) and \(f_I\), see “Frequency Measurement” in section 12.5, “Functions.”
- For the accuracy of measured values WP, WP+, WP−, q, q+, and q− and the integration time, see “Integration” in section 12.5, “Functions.”
- For the accuracies of voltage, current, and power during harmonic measurement; the accuracies of rotating speed and torque; and the accuracy of D/A output; see the respective sections in the Expansion Function User’s Manual IM760301-51E.
12.5 Functions

Measurement Function and Measurement Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement method</td>
<td>Digital multiplier method</td>
</tr>
<tr>
<td>Crest factor</td>
<td>Select 3 or 6 (when rated value of the measurement range is input) 300 for the minimum effective input.</td>
</tr>
<tr>
<td>Measurement period</td>
<td>Period used to determine and compute the measurement function.</td>
</tr>
<tr>
<td></td>
<td>• The measurement period is set by the zero crossing of the reference signal (synchronization source) when the data update interval is 50 ms, 100 ms, 5 s, 10 s, or 20 s (excluding watt hour WP as well as ampere hour q during DC mode).</td>
</tr>
<tr>
<td></td>
<td>• Measured through exponential averaging on the sampled data within the data update interval when the data update interval is 250 ms, 500 ms, 1 s, or 2 s.</td>
</tr>
<tr>
<td></td>
<td>• For harmonic measurement (/G6 or /G5 option), the measurement period is from the beginning of the data update interval to 9000 points at the harmonic sampling frequency.</td>
</tr>
<tr>
<td>Wiring system</td>
<td>Select the wiring system from the following:</td>
</tr>
<tr>
<td></td>
<td>1P2W: single-phase, two-wire, 1P3W: single-phase, three-wire, 3P4W: three-phase, four-wire, and 3P3W (3V3A) three-voltage, three-current</td>
</tr>
<tr>
<td></td>
<td>However, the selectable wiring systems vary depending on the number of input elements that are installed.</td>
</tr>
<tr>
<td>Measurement range</td>
<td>See section 12.1.</td>
</tr>
<tr>
<td>Compensation function</td>
<td>Efficiency compensation: Compensates for the instrumental loss during efficiency computation</td>
</tr>
<tr>
<td></td>
<td>Wiring compensation: Compensates for the instrumental loss due to wiring Tow-Wattmeter Method Compensation</td>
</tr>
<tr>
<td></td>
<td>* Selectable on models with the delta computation option.</td>
</tr>
<tr>
<td>Scaling</td>
<td>Set the current sensor transformation ratio, VT ratio, CT ratio, and power factor in the range of 0.0001 to 99999.9999 when inputting the external current sensor, VT, or CT output to the instrument.</td>
</tr>
<tr>
<td>Input filter</td>
<td>Specify a line filter or a frequency filter. See section 12.1.</td>
</tr>
<tr>
<td>Averaging</td>
<td>• Measurement Functions of Normal Measurement</td>
</tr>
<tr>
<td></td>
<td>Select exponential average or moving average.</td>
</tr>
<tr>
<td></td>
<td>• Exponential average</td>
</tr>
<tr>
<td></td>
<td>Select the attenuation constant from 2, 4, 8, 16, 32, and 64.</td>
</tr>
<tr>
<td></td>
<td>• Moving average</td>
</tr>
<tr>
<td></td>
<td>Select the average count from 8, 16, 32, 64, 128, and 256.</td>
</tr>
<tr>
<td></td>
<td>• Measurement Functions of Harmonic Measurement</td>
</tr>
<tr>
<td></td>
<td>• Exponential average</td>
</tr>
<tr>
<td></td>
<td>Select the attenuation constant from 2, 4, 8, 16, 32, and 64.</td>
</tr>
<tr>
<td>Data update rate</td>
<td>Select from 50 ms, 100 ms, 250 ms, 500 ms, 1 s, 2 s, 5 s, 10 s, and 20 s.</td>
</tr>
<tr>
<td>Display update rate</td>
<td>Same as the data update rate. Exceptions are listed below.</td>
</tr>
<tr>
<td></td>
<td>• The display update interval of numeric display (4, 8, and 16 items) is 250 ms when the data update rate is 50 ms or 100 ms.</td>
</tr>
<tr>
<td></td>
<td>• The display update interval of numeric display (ALL, Single List, and Dual List) is 500 ms when the data update rate is 50 ms to 250 ms.</td>
</tr>
<tr>
<td></td>
<td>• The display update rate of the trend display, bar graph display, and vector display is 1 s when the data update rate is 50 ms to 500 ms.</td>
</tr>
<tr>
<td></td>
<td>• The display update interval of the waveform display is approximately 1 s when the data update rate is 50 ms to 1 s. However, it may be longer depending on the trigger setting.</td>
</tr>
<tr>
<td>Response time</td>
<td>Data update rate × 2 at the maximum. Only when displaying numeric values.</td>
</tr>
<tr>
<td>Hold</td>
<td>Holds the data display.</td>
</tr>
<tr>
<td>Single measurement</td>
<td>Executes one measurement during the hold condition.</td>
</tr>
<tr>
<td>Zero-level compensation/Null</td>
<td>Performs zero-level compensation.</td>
</tr>
</tbody>
</table>
12.5 Functions

Measurement mode

Select from the following measurement modes.
- Normal measurement mode
- Wide bandwidth harmonic measurement mode*1
- IEC harmonic measurement mode*1
- Waveform computation mode*1
- FFT mode*1
- Voltage fluctuation and flicker measurement mode*2
- Cycle-by-cycle measurement mode*3

*1 Selectable on models with the advanced computation option.
*2 Selectable on models with the voltage fluctuation and flicker measurement option.
*3 Selectable on models with the cycle-by-cycle measurement option.

Frequency Measurement

Item	**Specifications**
Measured item | Select up to two of the frequencies of the voltage or current that is input to the input element. For models with the frequency measurement add-on option, the frequencies of all voltages and currents applied to the input element are measured.
Measurement method | Reciprocal method
Measurement range |

<table>
<thead>
<tr>
<th>Data update rate</th>
<th>Measurement range</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ms</td>
<td>45 Hz ≤ f ≤ 1 MHz</td>
</tr>
<tr>
<td>100 ms</td>
<td>25 Hz ≤ f ≤ 1 MHz</td>
</tr>
<tr>
<td>250 ms</td>
<td>10 Hz ≤ f ≤ 500 kHz</td>
</tr>
<tr>
<td>500 ms</td>
<td>5 Hz ≤ f ≤ 200 kHz</td>
</tr>
<tr>
<td>1 s</td>
<td>2.5 Hz ≤ f ≤ 100 kHz</td>
</tr>
<tr>
<td>2 s</td>
<td>1.5 Hz ≤ f ≤ 50 kHz</td>
</tr>
<tr>
<td>5 s</td>
<td>0.5 Hz ≤ f ≤ 20 kHz</td>
</tr>
<tr>
<td>10 s</td>
<td>0.25 Hz ≤ f ≤ 10 kHz</td>
</tr>
<tr>
<td>20 s</td>
<td>0.15 Hz ≤ f ≤ 5 kHz</td>
</tr>
</tbody>
</table>

Accuracy
±0.05% of reading
When the input signal level is greater than or equal to 25 mV (current sensor input), 150 mA (direct current input to the 30-A input element), or 1.5 mA (direct current input to the 2-A input element) and the signal is greater than or equal to 30% (0.1 Hz to 440 Hz, with frequency filter ON), 10% (440 Hz to 500 kHz), or 30% (500 kHz to 1 MHz) of the measurement range. Except, input greater than or equal to 50% of the measurement range when the frequency is less than or equal twice the lower limit of frequency described above. Add 0.05% of reading when the external current sensor input is 50 mV or less. Twice these values for the input signal level when the crest factor is set to 6.

Display resolution 99999

Frequency measurement filter Frequency filter (see section 12.1)

Integration

Item	**Specifications**
Mode	Select from manual, normal, repetitive, real-time normal, and real-time repetitive.
Measurement function	See section 12.3.
Integration timer	Automatic stop of integration by setting a timer.
	0000h00m00s to 10000h00m00s
Count overflow | When the integration time reaches its maximum (10000 hours) or the integration value reaches its maximum or minimum,**1** the integration time and integration value at that point are held and the integration is stopped.

*1 WP: ±999999 MWh
q: ±999999 MAh
WS: ±999999 MVAh
WQ: ±999999 Mvarh

12-10
12.5 Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>±(Power accuracy (or current accuracy) + timer accuracy)</td>
</tr>
<tr>
<td>Timer accuracy</td>
<td>±0.02% of reading</td>
</tr>
</tbody>
</table>

Computation

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-defined function</td>
<td>Computes numeric data of equations (up to 20 equations) that are created by combining the measurement function symbols and operators.</td>
</tr>
<tr>
<td>Average active power setting</td>
<td>Set with the user-defined function.</td>
</tr>
<tr>
<td>Efficiency equation setting</td>
<td>Computes numeric data of equations (up to four equations) that are created by combining the measurement function symbols.</td>
</tr>
<tr>
<td>Compensation setting</td>
<td>Computes wiring compensation, efficiency compensation, and two-wattmeter compensation.</td>
</tr>
<tr>
<td>Equation for apparent power and reactive power</td>
<td>Select TYPE1, TYPE2, or TYPE3. TYPE3 is selectable only in normal measurement mode on models with the advanced computation (/G6) or harmonic measurement (/G5) option.</td>
</tr>
<tr>
<td>Phase difference display</td>
<td>Select whether to display the phase difference using 180° lead and lag format or 360° format.</td>
</tr>
<tr>
<td>Delta computation</td>
<td>Computes other numeric data of the measured circuit from the computed results of the difference of the instantaneous values. Applicable only on models with the delta computation option.</td>
</tr>
<tr>
<td>Equation for distortion</td>
<td>Set the denominator of factor the equation to the total waveform or fundamental waveform. Applicable only to models with the advanced computation (/G6) or harmonic measurement (/G5) option.</td>
</tr>
</tbody>
</table>

Numeric Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed items</td>
<td>Displays the measurement functions of section 12.3 and those of the motor evaluation function, delta computation, and harmonic measurement options as described in the Expansion Function User’s Manual IM760301-51E.</td>
</tr>
<tr>
<td>Display resolution</td>
<td>600000</td>
</tr>
<tr>
<td>Number of displayed items</td>
<td>Select from 4, 8, 16, ALL, single list*, dual list*.</td>
</tr>
<tr>
<td>Scrolling of displayed items</td>
<td>Displays up to nine pages of the numeric data of the measurement functions by page scrolling.</td>
</tr>
<tr>
<td>Display reset</td>
<td>Resets the display order of the numeric data to default.</td>
</tr>
</tbody>
</table>

Waveform Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of display rasters</td>
<td>501</td>
</tr>
<tr>
<td>Display format</td>
<td>Peak-Peak compressed data</td>
</tr>
<tr>
<td>Sample rate</td>
<td>Approx. 200 kS/s. Waveforms can be reproduced accurately up to approximately 10 kHz.</td>
</tr>
<tr>
<td>Time axis</td>
<td>In the range of 0.5 ms/div to 2 s/div. However, less than or equal to 1/10 of the data update rate.</td>
</tr>
<tr>
<td>Trigger</td>
<td>• Trigger type: Edge type</td>
</tr>
<tr>
<td></td>
<td>• Trigger mode: Select auto or normal. Trigger automatically turns OFF when integration is in progress.</td>
</tr>
<tr>
<td></td>
<td>• Trigger source: Select from the voltage or current applied to the input element and external clock.</td>
</tr>
<tr>
<td></td>
<td>• Trigger slope: Select from f (rising), l (falling), or f (rising and falling).</td>
</tr>
<tr>
<td></td>
<td>• Trigger level: When the trigger source is a voltage or current applied to the input element Set in the range of $\pm 100%$ (to the top or bottom edge of the screen) from the screen center. Resolution: 0.1%. When the trigger source is Ext Clk (external clock) TTL level. For the specifications of the external clock, see section 6.3.</td>
</tr>
<tr>
<td>Vertical zoom on the waveform</td>
<td>Zoom in/out vertically for each voltage or current applied to the input element. Set the zoom rate in the range from 0.1 to 100 times.</td>
</tr>
<tr>
<td>Waveform display ON/OFF</td>
<td>Select ON/OFF for each voltage or current applied to the input element.</td>
</tr>
<tr>
<td>Waveform display format</td>
<td>1, 2, 3, and 4 split window displays are possible.</td>
</tr>
</tbody>
</table>
12.5 Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display interpolation of</td>
<td>Select dot or linear display.</td>
</tr>
<tr>
<td>the waveform</td>
<td></td>
</tr>
<tr>
<td>Graticule</td>
<td>Select the grid and cross scale display.</td>
</tr>
<tr>
<td>Auxiliary display ON/OFF</td>
<td>Turn ON/OFF the upper and lower limits (scale value) and the waveform label.</td>
</tr>
<tr>
<td>Cursor measurement</td>
<td>Measure the value at the point where the cursor is placed on the waveform.</td>
</tr>
</tbody>
</table>

Vector Display and Bar Graph Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector display</td>
<td>Displays vectors of the phase difference of the fundamental waveforms. Applicable on models with the advanced computation (/G6) or harmonic measurement (/G5) option.</td>
</tr>
<tr>
<td>Bar graph display</td>
<td>Displays the bar graph of the amplitude of each harmonic. Applicable on models with the the advanced computation (/G6) or harmonic measurement (/G5) option.</td>
</tr>
</tbody>
</table>

Trend Display

Displays the trend of the numeric data of the measurement function on a graph. The maximum number of displayed items is 16.

Simultaneous Display

Displays a combination of two displays from numeric, waveform, bar graph, and trend in the top and bottom halves of the divided screen.

Data Store and Recall

<table>
<thead>
<tr>
<th>Store</th>
<th>Store the numerical data and waveform display data in the internal memory. Save the stored data to a storage medium.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal memory</td>
<td>Approx. 30 MB</td>
</tr>
<tr>
<td>Storage interval</td>
<td>50 ms (when waveform is OFF) to 99 hours 59 minutes 59 seconds.</td>
</tr>
<tr>
<td>Recall</td>
<td>Recall the stored data from the internal memory.2</td>
</tr>
</tbody>
</table>

1 PC card, USB storage, and network drive. The USB port (for peripheral devices) and Ethernet interface are options.
2 Cannot recall the data from a saved file.

Saving and Loading of Data

Save setup parameters, numeric data, waveform display data, waveform sampling data,1 and screen image data to a storage medium.2

Loads the saved setup parameters from the storage medium.2

1 Selectable on models with the advanced computation (/G6) option.
2 PC card, USB storage, and network drive. The USB port (for peripheral devices) and Ethernet interface are options.

Printing of the Screen Image and Numeric Data List

Print the screen image and numeric data list on the built-in printer.1

1 The built-in printer is an option.
12.6 Input/Output of the Master/Slave Synchronization Signal

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector: Common to the master and slave</td>
</tr>
<tr>
<td>I/O level</td>
<td>TTL: Common to the master and slave</td>
</tr>
<tr>
<td>Output logic</td>
<td></td>
</tr>
<tr>
<td>Measurement start delay time</td>
<td>Within (1 µs + 1 sample period): Applicable to the master</td>
</tr>
<tr>
<td>Output hold time</td>
<td>Low level, 500 ns or more: Applicable to the master</td>
</tr>
<tr>
<td>Input logic</td>
<td></td>
</tr>
<tr>
<td>Minimum pulse width</td>
<td>Low level, 500 ns or more: Applicable to the slave</td>
</tr>
<tr>
<td>Input delay time</td>
<td>During HOLD ON Within (1 µs + 1 sample period): Applicable to the slave</td>
</tr>
<tr>
<td></td>
<td>During HOLD OFF Within (63 µs + 1 sample period): Applicable to the slave</td>
</tr>
</tbody>
</table>

12.7 External Clock Input

Common

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>BNC connector</td>
</tr>
<tr>
<td>Input level</td>
<td>TTL</td>
</tr>
</tbody>
</table>

When Used as a Synchronization Source (Ext Clk) during Normal Measurement

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Same as the measurement range of “Frequency Measurement” in section 12.5.</td>
</tr>
<tr>
<td>Input waveform</td>
<td>50% duty ratio rectangular wave</td>
</tr>
</tbody>
</table>

When Used as a PLL Source (Ext Clk) during Harmonic Measurement

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Harmonic measurement (/G5) option: 10 Hz to 440 Hz</td>
</tr>
<tr>
<td></td>
<td>Advanced computation (/G6) option: 10 Hz to 2600 Hz</td>
</tr>
<tr>
<td>Input waveform</td>
<td>50% duty ratio rectangular wave</td>
</tr>
</tbody>
</table>

When Used as an External Sampling Clock (Smp Clk) during Wide Bandwidth Harmonic Measurement Mode

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Frequencies that are 3000 times 0.1 Hz to 66 Hz</td>
</tr>
<tr>
<td>Input waveform</td>
<td>50% duty ratio rectangular wave</td>
</tr>
</tbody>
</table>

When Used as a Trigger

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum pulse width</td>
<td>1 µs</td>
</tr>
<tr>
<td>Trigger delay time</td>
<td>Within (1 µs + 1 sample interval)</td>
</tr>
</tbody>
</table>
12.8 Storage

PC Card Interface

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of slots</td>
<td>1</td>
</tr>
<tr>
<td>Type</td>
<td>TYPE II flash ATA card</td>
</tr>
</tbody>
</table>

USB Storage Device

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported USB mass</td>
<td>USB memory (USB Mass Storage Class)</td>
</tr>
<tr>
<td>storage devices</td>
<td></td>
</tr>
</tbody>
</table>

For specification details, see the next section, “USB PERIPHERAL Interface.”

12.9 USB PERIPHERAL Interface

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>USB type A connector (receptacle)</td>
</tr>
<tr>
<td>Electrical and mechanical specifications</td>
<td>Conforms to USB Rev.1.1</td>
</tr>
<tr>
<td>Data rate</td>
<td>12 Mbps maximum</td>
</tr>
<tr>
<td>Supported keyboards*1</td>
<td>104 keyboard (US) and 109 keyboard (Japanese) conforming to USB HID Class Ver.1.1</td>
</tr>
<tr>
<td>Supported USB mass</td>
<td>USB memory (USB Mass Storage Class)</td>
</tr>
<tr>
<td>storage devices</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>5 V, 500 mA*2 (per port)</td>
</tr>
<tr>
<td>Number of ports</td>
<td>2</td>
</tr>
</tbody>
</table>

*1 For details on the compatible USB devices, contact your nearest YOKOGAWA dealer.

*2 Devices whose maximum current consumption exceeds 100 mA cannot be connected simultaneously to the two ports.
12.10 GP-IB Interface

Item Specifications

Devices That Can Be Used
- NATIONAL INSTRUMENTS
 - AT-GPIB
 - PCI-GPIB and PCI-GPIB+
 - PCMCIA-GPIB and PCMCIA-GPIB+
- Driver: NI-488.2M Ver. 1.60 or later

Electrical and mechanical specifications

Functional specifications
- SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, and C0

Protocol
- Conforms to IEEE Std 488.2-1992

Code used
- ISO (ASCII) code

Address
- 0 to 30

Clear remote mode
- Remote mode can be cleared by pressing LOCAL (except during Local Lockout).

For details on the specifications of the GP-IB interface, see the Communication Interface User’s Manual (IM760301-17E).

12.11 Safety Terminal Adapter

Item Specifications

Maximum allowable current
- 36 A

Withstand voltage
- 1000 V CAT III

Contact resistance
- 10 mΩ or less

Contact section
- Nickel plating on brass or bronze

Insulator
- Polyamide

Core wire
- Maximum diameter 1.8 mm

Insulation thickness
- Maximum diameter 3.9 mm
12.12 General Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up time</td>
<td>Approx. 30 minutes</td>
</tr>
</tbody>
</table>
| Operating conditions | Temperature: 5 to 40°C
 | Humidity: 20 to 80% RH when not using the printer, 35 to 80% RH when using the printer.
 | (No condensation) |
| Operating altitude | 2000 m or less |
| Installation location | Indoors |
| Storage environment | Temperature: –25 to 60°C
 | Humidity: 20 to 80% RH.
 | (No condensation) |
| Rated supply voltage | 100 to 240 VAC |
| Permitted supply voltage range | 90 to 264 VAC |
| Rated supply voltage frequency | 50/60 Hz |
| Permitted supply voltage frequency range | 48 to 63 Hz |
| Maximum power consumption | 150 VA (when using the built-in printer) |
| External dimensions | Approx. 426 mm (W) × 177 mm (H) × 459 mm (D)
 | (Excludes the handle and other projections.) |
| Weight | Approx. 14 kg (main unit, 4 input elements, and option installed) |
| Installation position | Horizontal (however, the stand can be used). Vertical position and stacking not allowed. |
| Battery backup | Setup parameters and the internal time clock are backed up with lithium batteries. |
| Fuse | Location
 | Maximum Rated Voltage | Maximum Rated Current | Type | Standard |
| Power supply | 250 V
 | 6.3 A
 | Time lag
 | UL/VDEcertified |

1 Safety standard

- Complying standard
- EN61010-1, EN61010-2-030
- Overvoltage category (Installation category) CAT II²
- Measurement category CAT II³
- Pollution degree 2⁴
12.12 General Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>Complying standard</td>
</tr>
<tr>
<td></td>
<td>EN61326-1 Class A</td>
</tr>
<tr>
<td></td>
<td>EN55011 Class A, Group 1</td>
</tr>
<tr>
<td></td>
<td>EN61000-3-2</td>
</tr>
<tr>
<td></td>
<td>EN61000-3-3</td>
</tr>
<tr>
<td></td>
<td>EMC Regulatory Arrangement in Australia and New Zealand EN 55011 Class A, Group 1</td>
</tr>
<tr>
<td></td>
<td>Korea Electromagnetic Conformity Standard (한국 전자파적합성기준)</td>
</tr>
<tr>
<td></td>
<td>This product is a Class A (for industrial environment) product. Operation of this product in a residential area may cause radio interference in which case the user is required to correct the interference.</td>
</tr>
<tr>
<td>Cable condition</td>
<td>Outer sensor input terminal</td>
</tr>
<tr>
<td></td>
<td>Use the B9284LK External Sensor Cable.</td>
</tr>
<tr>
<td></td>
<td>EXT CLK/MEAS. START/TORQUE (motor version)/SPEED (motor version) terminal</td>
</tr>
<tr>
<td></td>
<td>Use a BNC cable.</td>
</tr>
<tr>
<td></td>
<td>GP-IB interface connector</td>
</tr>
<tr>
<td></td>
<td>Use a shielded GP-IB cable.</td>
</tr>
<tr>
<td></td>
<td>RS-232 interface (option) connector</td>
</tr>
<tr>
<td></td>
<td>Use a shielded RS-232 cable.</td>
</tr>
<tr>
<td></td>
<td>D/A OUTPUT (option) connector</td>
</tr>
<tr>
<td></td>
<td>Use a shielded cable.</td>
</tr>
<tr>
<td></td>
<td>RGB VIDEO OUT (option) connector</td>
</tr>
<tr>
<td></td>
<td>Use a 15-pin D-sub shielded VGA cable.</td>
</tr>
<tr>
<td></td>
<td>Devices that are easily affected by noise may be affected by the conducted interference generated from the cables used for measurements that are connected to the WT3000. In such case, the user is required to correct the interference.</td>
</tr>
<tr>
<td></td>
<td>USB port (PC) (option)</td>
</tr>
<tr>
<td></td>
<td>Use shielded USB cables.</td>
</tr>
<tr>
<td></td>
<td>USB port (peripheral devices) (option)</td>
</tr>
<tr>
<td></td>
<td>Use a USB keyboard with a shielded cable.</td>
</tr>
<tr>
<td></td>
<td>Ethernet (option) connector</td>
</tr>
<tr>
<td></td>
<td>Use category 5 Ethernet cables or better cables.</td>
</tr>
</tbody>
</table>

Immunity

<table>
<thead>
<tr>
<th>Immunity</th>
<th>Complying standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN61326-1 Table 2 (for use in industrial locations)</td>
</tr>
<tr>
<td>Influence in the immunity environment</td>
<td>Signal input: Within ±20 of range (within ±40% of range if the crest factor is set to 6)</td>
</tr>
<tr>
<td></td>
<td>D/A output: Within ±20 of FS when FS = 5 V</td>
</tr>
<tr>
<td>Cable condition</td>
<td>Same as the cable condition for emission above.</td>
</tr>
</tbody>
</table>

*1 Applies to products with CE marks. For all other products, contact your nearest YOKOGAWA dealer.

*2 The Overvoltage Category is a value used to define the transient overvoltage condition and includes the impulse withstand voltage regulation. CAT II applies to electrical equipment that is powered through a fixed installation such as a wall outlet wired to a distribution board.

*3 This instrument is measurement category II product. Do not use for Measurement Categories III and IV. Measurement category O applies to measurement of other circuits that are not directly connected to a main power source. Measurement Category II applies to electrical equipment that is powered through a fixed installation, such as a wall outlet wired to a distribution board, and to measurement performed on such wiring. Measurement category III applies to measurement of facility circuits, such as distribution boards and circuit breakers. Measurement category IV applies to measurement of power source circuits, such as entrance cables to buildings and cable systems, for low-voltage installations.

*4 Pollution Degree applies to the degree of adhesion of a solid, liquid, or gas which deteriorates withstand voltage or surface resistivity. Pollution Degree 1 applies to closed atmospheres (with no, or only dry, non-conductive pollution). Pollution Degree 2 applies to normal indoor atmospheres (with only non-conductive pollution).

*5 Use cables of length 3 m or less.
12.13 External Dimensions

Dimensions with the JIS rack mount kit

Dimensions with the EIA rack mount kit

Unit: mm

Unless otherwise specified, tolerance is ±3% (however, tolerance is ±0.3 mm when below 10 mm).

Rear View
Appendix 1 Symbols and Determination of Measurement Functions

Measurement Functions during Normal Measurement

<table>
<thead>
<tr>
<th>Voltage U [V]</th>
<th>Method of Determination, Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>True rms value Urms</td>
<td>$\sqrt{\text{AVG}[u(n)^2]}$</td>
</tr>
<tr>
<td>Rectified mean value calibrated to the rms value Umn</td>
<td>$\frac{\pi}{2} \sqrt{\text{AVG}[</td>
</tr>
<tr>
<td>Simple average Udc</td>
<td>$\text{AVG}[u(n)]$</td>
</tr>
<tr>
<td>Rectified mean value Urmn</td>
<td>$\text{AVG}[</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current I [A]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>True rms value Irms</td>
<td>$\sqrt{\text{AVG}[i(n)^2]}$</td>
</tr>
<tr>
<td>Rectified mean value calibrated to the rms value Irmn</td>
<td>$\frac{\pi}{2} \sqrt{\text{AVG}[</td>
</tr>
<tr>
<td>Simple average Idc</td>
<td>$\text{AVG}[i(n)]$</td>
</tr>
<tr>
<td>Rectified mean value Irmn</td>
<td>$\text{AVG}[</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active power P [W]</th>
<th>$\text{AVG}[(u(n)-i(n))]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent power S [VA]</td>
<td>$\text{P} + \text{Q}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage frequency f_U (FreqU) [Hz]</th>
<th>Current frequency f_I (FreqI) [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The voltage frequency (f_U) and current frequency (f_I) are measured using zero crossing detection. Two frequencies from the f_U and f_I of all installed elements (including the PLL source frequency) can be measured simultaneously. On the model with the frequency measurement add-on option, the f_U and f_I of all elements can be measured simultaneously.</td>
<td>Valid only when harmonics are being measured correctly.</td>
</tr>
</tbody>
</table>

Corrected Power P_c [W]

- Voltage crest factor $\text{CfU} = \frac{\text{Upk}}{\text{Urms}}$
- Current crest factor $\text{CfI} = \frac{\text{Ipk}}{\text{Irms}}$
- Displays "- - - - " when the voltage mode is not RMS
- Displays "- - - - " when the current mode is not RMS

- $P = \frac{\left(P_1 + P_2\right)^2}{\text{Urms}^2}$
- $P = \left(1 + \frac{\text{Umn} - \text{Urms}}{\text{Umn}}\right)^2$

- Coefficients defined in the applicable standard

Notes
- Displays "- - - - " when the voltage mode is not RMS or MEAN.

(Continues to the next page)
Measurement Functions during Normal Measurement

<table>
<thead>
<tr>
<th>Integration time [h:m:s]</th>
<th>Method of Determination, Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from integration start to integration stop.</td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{1}{N} \sum_{n=1}^{N} u(n) \cdot i(n) \cdot \text{Time}
\]

- \(u(n)\) is the nth measured voltage value.
- \(i(n)\) is the nth measured current value.
- \(N\) is the number of data updates.
- The time unit is h.

- \(P\) is the sum of positive consumed watt hours.
- \(Q\) is the sum of reactive watt hours returned to the power supply.

<table>
<thead>
<tr>
<th>Watt hour [Wh]</th>
<th>WP</th>
<th>WP+</th>
<th>WP–</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N) is the number of samples over the integration time. The time unit is h. WP is the sum of positive and negative watt hours. WP+ is the sum of positive (P) (consumed watt hours). WP– is the sum of negative (P) (watt hours returned to the power supply).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ampere hour [Ah]</th>
<th>q</th>
<th>q+</th>
<th>q–</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i(n)) is the (n^{th}) sampled data of the current signal. (q) is the sum of positive and negative ampere hours. q+ is the sum of positive (i(n)) (ampere hours). q– is the sum of negative (i(n)) (ampere hours). The time unit is h.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{1}{N} \sum_{n=1}^{N} i(n) \cdot \text{Time}
\]

<table>
<thead>
<tr>
<th>DC</th>
<th>(S(n))</th>
<th>(S(n)) • Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n)) is the (n^{th}) measured apparent power value, and (N) is the number of data updates.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volt-ampere-hour WS [VAh]</th>
<th>(Q(n))</th>
<th>(Q(n)) • Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q(n)) is the (n^{th}) measured reactive power value, and (N) is the number of data updates.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiring system</th>
<th>Single-phase, two-wire 1P3W</th>
<th>Three-phase, three-wire 3P3W</th>
<th>Three-phase, three-wire (three-voltage, three-current) 3P3W (3V3A)</th>
<th>Three-phase, four-wire 3P4W</th>
</tr>
</thead>
<tbody>
<tr>
<td>UΣ [V]</td>
<td>(U1 + U2) / 2</td>
<td>(U1 + U2 + U3) / 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IΣ [A]</td>
<td>(I1 + I2) / 2</td>
<td>(I1 + I2 + I3) / 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PΣ [W]</td>
<td>P1 + P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SΣ [VA]</td>
<td>TYPE2 S1 + S2</td>
<td>(\sqrt{3}/2) (S1 + S2)</td>
<td>(\sqrt{3}/3) (S1 + S2 + S3)</td>
<td>S1 + S2 + S3</td>
</tr>
<tr>
<td>QΣ [var]</td>
<td>TYPE1 Q1 + Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TYPE2 (\sqrt{S^2 - P^2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TYPE3 Q1 + Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PcΣ [W]</td>
<td>TYPE2 Pc1 + Pc2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continues to the next page)
Appendix 1 Symbols and Determination of Measurement Functions

<table>
<thead>
<tr>
<th>Measurement Functions during Normal Measurement</th>
<th>Method of Determination, Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-phase, two-wire 1P3W</td>
</tr>
<tr>
<td>WPΣ [Wh]</td>
<td>WPΣ</td>
</tr>
<tr>
<td>qΣ [Ah]</td>
<td>qΣ</td>
</tr>
<tr>
<td>WΣ [VAh]</td>
<td>1 (\sum_{n=1}^{N} \Sigma(n) \cdot \text{Time})</td>
</tr>
<tr>
<td>WQΣ [varh]</td>
<td>1 (\sum_{n=1}^{N} \left</td>
</tr>
<tr>
<td>(\lambda \Sigma)</td>
<td>(\frac{PΣ}{SΣ})</td>
</tr>
<tr>
<td>(\phi \Sigma)</td>
<td>(\cos^{-1} \left(\frac{PΣ}{SΣ} \right))</td>
</tr>
</tbody>
</table>

Note

- \(u(n) \) denotes the instantaneous voltage (sampled data of the voltage signal).
- \(i(n) \) denotes the instantaneous current (sampled data of the current signal).
- \(\text{AVG[]} \) computes the average on the sampled data in the brackets over the measurement period. There are two ways of computing the average, and either one is selected depending on the data update interval. For details on the measurement period and the averaging method, see appendix 7, “Data Update Rate and Computing Equation.”
- \(PΣA \) and \(PΣB \) denote the active power of the wiring units \(ΣA \) and \(ΣB \), respectively. The assignment of input elements to wiring units \(ΣA \) and \(ΣB \) is determined by the number of input elements that are installed in the WT3000 and the selected wiring system pattern. For details, see section 2.3.
- The numbers 1, 2, and 3 in the equations \(UΣ, IΣ, PΣ, SΣ, QΣ, PcΣ, WPΣ, \) and \(qΣ \) indicate the case when input elements 1, 2, and 3 are set to the wiring system shown in the table. If elements 2, 3, and 4 are set to the wiring system shown in the table, replace the numbers 1, 2, and 3 with 2, 3, and 4, respectively.
- Equation TYPE 3 for \(SΣ \) and \(QΣ \) can be selected only on models with the advanced computation (/G6) or the harmonic measurement (/G5) option.
- \(S, Q, \lambda \), and \(φ \) on the WT3000 are derived through the computation of the measured values of voltage, current, and active power (except Q is calculated directly from the sampled data when TYPE3 is selected). If distorted signal is input, the value obtained on this instrument may differ from that obtained on other instruments using a different measurement principle.
- For Q [var] computation, when the current leads the voltage, the Q value is displayed as a negative value; when the current lags the voltage, the Q value is displayed as a positive value. The value of \(QΣ \) may be negative, because it is calculated from Q of each element including the sign.

For details on the measurement functions of the motor evaluation function, see section 1.10 in the Expansion Function User’s Manual IM760301-51E.

For details on the measurement functions of harmonic measurement, see section 7.11 in the Expansion Function User’s Manual IM760301-51E.
Appendix 2 List of Initial Settings and Display Order of Numeric Data

Initial Settings (Factory Default, Example for a Model with Four Input Elements Installed)

The default settings vary depending on the number of installed input elements and the presence/absence of options.

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td></td>
</tr>
<tr>
<td>U Range</td>
<td>2-A input element 1000 V</td>
</tr>
<tr>
<td>I input Terminal</td>
<td>Direct</td>
</tr>
<tr>
<td>I Direct input Range</td>
<td>2 A</td>
</tr>
<tr>
<td>External Sensor Range</td>
<td>10 V</td>
</tr>
<tr>
<td>SENSOR RATIO</td>
<td>10.0000 mV/A</td>
</tr>
<tr>
<td>WIRING</td>
<td></td>
</tr>
<tr>
<td>Wiring Setting</td>
<td>1P2W</td>
</tr>
<tr>
<td>η1 Formula</td>
<td>η1 (\frac{P\Sigma B}{P\Sigma A})</td>
</tr>
<tr>
<td>η2</td>
<td>(\frac{P\Sigma A}{P\Sigma B})</td>
</tr>
<tr>
<td>η3</td>
<td>Off/1</td>
</tr>
<tr>
<td>η4</td>
<td>Off/1</td>
</tr>
<tr>
<td>Udef1</td>
<td>P1+None+None+None</td>
</tr>
<tr>
<td>Udef2</td>
<td>P1+None+None+None</td>
</tr>
<tr>
<td>Compensation</td>
<td></td>
</tr>
<tr>
<td>Efficiency Compensation</td>
<td>Off</td>
</tr>
<tr>
<td>Element Independent</td>
<td>Off</td>
</tr>
<tr>
<td>ΔMeasure</td>
<td>-</td>
</tr>
<tr>
<td>SCALING</td>
<td></td>
</tr>
<tr>
<td>Scaling</td>
<td>Off</td>
</tr>
<tr>
<td>Scaling Item</td>
<td>VT 1.0000</td>
</tr>
<tr>
<td>CT</td>
<td>1.0000</td>
</tr>
<tr>
<td>Scaling Factor</td>
<td>1.0000</td>
</tr>
<tr>
<td>LINE FILTER</td>
<td>Off</td>
</tr>
<tr>
<td>FREQ FILTER</td>
<td>Off</td>
</tr>
<tr>
<td>AVG</td>
<td></td>
</tr>
<tr>
<td>Averaging</td>
<td>Off</td>
</tr>
<tr>
<td>Averaging Type</td>
<td>Exp.</td>
</tr>
<tr>
<td>Exp. Count</td>
<td>2</td>
</tr>
<tr>
<td>Lin. Count</td>
<td>8</td>
</tr>
<tr>
<td>MEASURE</td>
<td></td>
</tr>
<tr>
<td>User Defined</td>
<td>On/Off</td>
</tr>
<tr>
<td>Function1</td>
<td>Off V UMN(E1)</td>
</tr>
<tr>
<td>Function2</td>
<td>Off V UMN(E2)</td>
</tr>
<tr>
<td>Function3</td>
<td>Off V UMN(E3)</td>
</tr>
<tr>
<td>Function4</td>
<td>Off V UMN(E4)</td>
</tr>
<tr>
<td>Function5</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function6</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function7</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function8</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function9</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function10</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function11</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function12</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function13</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function14</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function15</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function16</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function17</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function18</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Function19</td>
<td>Off V U(E1,ORT)</td>
</tr>
<tr>
<td>Function20</td>
<td>Off A I(E1,ORT)</td>
</tr>
<tr>
<td>Max Hold</td>
<td>Off</td>
</tr>
</tbody>
</table>
Appendix 2 List of Initial Settings and Display Order of Numeric Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>S,Q Formula</td>
<td>Type1</td>
</tr>
<tr>
<td>Pc Formula</td>
<td>IEC76-1 (1976)</td>
</tr>
<tr>
<td>P1 and P2 of IEC76-1 (1993)</td>
<td>P1 = 0.5000, P2 = 0.5000</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>Auto</td>
</tr>
<tr>
<td>Phase</td>
<td>180 Lead/Lag</td>
</tr>
<tr>
<td>Sync Measure</td>
<td>Master</td>
</tr>
<tr>
<td>SYNC SOURCE</td>
<td></td>
</tr>
<tr>
<td>Element Object</td>
<td>Element1 Element2 Element3 Element4</td>
</tr>
<tr>
<td>Sync Source</td>
<td>I1 I2 I3 I4</td>
</tr>
<tr>
<td>UPDATE RATE</td>
<td></td>
</tr>
<tr>
<td>Update Rate</td>
<td>500 ms (EAMP)</td>
</tr>
<tr>
<td>HOLD</td>
<td></td>
</tr>
<tr>
<td>Hold</td>
<td>Off</td>
</tr>
<tr>
<td>INTEGRATOR</td>
<td></td>
</tr>
<tr>
<td>Integrator Status</td>
<td>Reset status</td>
</tr>
<tr>
<td>Integ Set</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Normal</td>
</tr>
<tr>
<td>Timer Setting</td>
<td>00000:00:00</td>
</tr>
<tr>
<td>Integ Start</td>
<td>2006/01/01 00:00:00</td>
</tr>
<tr>
<td>Integ End</td>
<td>2006/01/01 01:00:00</td>
</tr>
<tr>
<td>Auto Cal</td>
<td>Off</td>
</tr>
<tr>
<td>D/A Rated Time</td>
<td>00001:00:00 (displayed when the optional D/A output is installed)</td>
</tr>
</tbody>
</table>

ITEM (for Numeric)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>U</td>
</tr>
<tr>
<td>Element/Σ</td>
<td>Element1</td>
</tr>
<tr>
<td>Order</td>
<td>–</td>
</tr>
<tr>
<td>Frequency Meas. Item</td>
<td>U1, I1</td>
</tr>
</tbody>
</table>

FORM (for Numeric)

<table>
<thead>
<tr>
<th>Numeric Form</th>
<th>4 Items</th>
</tr>
</thead>
</table>

ITEM (for Wave)

<table>
<thead>
<tr>
<th>Wave Display</th>
<th>U1 to I4, Speed, Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Zoom & Position</td>
<td>Element Object Element1</td>
</tr>
<tr>
<td>(U) V Zoom</td>
<td>x1</td>
</tr>
<tr>
<td>(U) Position</td>
<td>0.000%</td>
</tr>
<tr>
<td>(I) V Zoom</td>
<td>x1</td>
</tr>
<tr>
<td>(I) Position</td>
<td>0.000%</td>
</tr>
</tbody>
</table>

FORM (for Wave)

<table>
<thead>
<tr>
<th>Format</th>
<th>Single</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/div</td>
<td>5 ms</td>
</tr>
<tr>
<td>Trigger</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>Source</td>
<td>U1</td>
</tr>
<tr>
<td>Slope</td>
<td>Rise</td>
</tr>
<tr>
<td>Level</td>
<td>0.0%</td>
</tr>
<tr>
<td>Display Setting</td>
<td></td>
</tr>
<tr>
<td>Interpolate</td>
<td>Line</td>
</tr>
<tr>
<td>Graticule</td>
<td>Grid</td>
</tr>
<tr>
<td>Scale Value</td>
<td>On</td>
</tr>
<tr>
<td>Label</td>
<td>Off</td>
</tr>
<tr>
<td>Wave Mapping</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>User Setting</td>
<td>U1.0, I1.0, U2:1, I2:1, U3:2, I3:2, U4:3, I4:3, Speed:0, Torque:0, Math:1.1, Math:2.1</td>
</tr>
</tbody>
</table>

ITEM (for Bar, displayed on models with the advanced computation (/G6) or harmonic measurement (/G5) option.)

<table>
<thead>
<tr>
<th>Bar Item No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>U</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Element</td>
<td>Element1</td>
<td>Element1</td>
<td>Element1</td>
</tr>
</tbody>
</table>
Appendix 2 List of Initial Settings and Display Order of Numeric Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORM (for Bar, displayed on models with the advanced computation (/G6) or harmonic measurement (/G5) option)</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>Single</td>
</tr>
<tr>
<td>Start Order</td>
<td>1</td>
</tr>
<tr>
<td>End Order</td>
<td>100</td>
</tr>
<tr>
<td>ITEM (for Trend)</td>
<td></td>
</tr>
<tr>
<td>Trend Display</td>
<td>On</td>
</tr>
<tr>
<td>Trend Items</td>
<td>T1 to T8</td>
</tr>
<tr>
<td>Trend Object</td>
<td>T1</td>
</tr>
<tr>
<td>Function</td>
<td>U</td>
</tr>
<tr>
<td>Element</td>
<td>Element1</td>
</tr>
<tr>
<td>Order</td>
<td>–</td>
</tr>
<tr>
<td>Trend Scale</td>
<td></td>
</tr>
<tr>
<td>Trend Object</td>
<td>T1</td>
</tr>
<tr>
<td>Scaling</td>
<td>Auto</td>
</tr>
<tr>
<td>Upper Scale</td>
<td>1.000E+02</td>
</tr>
<tr>
<td>Lower Scale</td>
<td>-1.000E+02</td>
</tr>
<tr>
<td>FORM (for Trend)</td>
<td></td>
</tr>
<tr>
<td>Trend Format</td>
<td>Single</td>
</tr>
<tr>
<td>Trend T/div</td>
<td>3 s/div</td>
</tr>
<tr>
<td>Display Setting</td>
<td>Common to FORM (for Wave)</td>
</tr>
<tr>
<td>FORM (for Vector, displayed on models with the advanced computation (/G6) or harmonic measurement (/G5) option)</td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>(\Sigma A)</td>
</tr>
<tr>
<td>Numeric</td>
<td>On</td>
</tr>
<tr>
<td>U Mag</td>
<td>1.000</td>
</tr>
<tr>
<td>I Mag</td>
<td>1.000</td>
</tr>
<tr>
<td>ITEM (for MATH, displayed on models with the advanced computation (/G6) option)</td>
<td></td>
</tr>
<tr>
<td>Wave/Math Display</td>
<td>On</td>
</tr>
<tr>
<td>V Zoom & Position</td>
<td>Common to ITEM (for Wave)</td>
</tr>
<tr>
<td>Math Setup</td>
<td></td>
</tr>
<tr>
<td>Math1 Expression</td>
<td>U1*I1</td>
</tr>
<tr>
<td>Scale</td>
<td>Auto</td>
</tr>
<tr>
<td>Center</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>Scale/div</td>
<td>2.5000E+01</td>
</tr>
<tr>
<td>Unit</td>
<td>W</td>
</tr>
<tr>
<td>Label</td>
<td>Math1</td>
</tr>
<tr>
<td>Math2 Expression</td>
<td>ABS(U1)</td>
</tr>
<tr>
<td>Scale</td>
<td>Auto</td>
</tr>
<tr>
<td>Center</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>Scale/div</td>
<td>2.5000E+01</td>
</tr>
<tr>
<td>Unit</td>
<td>V</td>
</tr>
<tr>
<td>Label</td>
<td>Math2</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>1.0000E+00</td>
</tr>
<tr>
<td>K2</td>
<td>2.0000E+00</td>
</tr>
<tr>
<td>K3</td>
<td>3.0000E+00</td>
</tr>
<tr>
<td>K4</td>
<td>4.0000E+00</td>
</tr>
<tr>
<td>K5</td>
<td>5.0000E+00</td>
</tr>
<tr>
<td>K6</td>
<td>6.0000E+00</td>
</tr>
<tr>
<td>K7</td>
<td>7.0000E+00</td>
</tr>
<tr>
<td>K8</td>
<td>8.0000E+00</td>
</tr>
<tr>
<td>FORM (for MATH, displayed on models with the advanced computation (/G6) option)</td>
<td></td>
</tr>
<tr>
<td>Common to FORM (for Wave)</td>
<td></td>
</tr>
<tr>
<td>ITEM (for FFT, displayed on models with the advanced computation (/G6) option)</td>
<td></td>
</tr>
<tr>
<td>FFT1 Display</td>
<td>On</td>
</tr>
<tr>
<td>FFT1 Object</td>
<td>FFT(U1)</td>
</tr>
<tr>
<td>FFT1 Label</td>
<td>FFT1</td>
</tr>
<tr>
<td>FFT2 Display</td>
<td>On</td>
</tr>
<tr>
<td>FFT2 Object</td>
<td>FFT(I1)</td>
</tr>
<tr>
<td>FFT2 Label</td>
<td>FFT2</td>
</tr>
</tbody>
</table>
Appendix 2 List of Initial Settings and Display Order of Numeric Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORM (for FFT, displayed on models with the advanced computation (/G6) option)</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>Single</td>
</tr>
<tr>
<td>FFT Points</td>
<td>20k</td>
</tr>
<tr>
<td>Trigger</td>
<td>Common to FORM (for Wave)</td>
</tr>
<tr>
<td>Display Setting</td>
<td></td>
</tr>
<tr>
<td>Interpolate</td>
<td>Common to FORM (for Wave)</td>
</tr>
<tr>
<td>Graticule</td>
<td>Common to FORM (for Wave)</td>
</tr>
<tr>
<td>Scale Value</td>
<td>Common to FORM (for Wave)</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>Line</td>
</tr>
<tr>
<td>FFT Window</td>
<td>Rect</td>
</tr>
<tr>
<td>Disp Start</td>
<td>0</td>
</tr>
<tr>
<td>Disp End</td>
<td>10000</td>
</tr>
<tr>
<td>Vertical Scale</td>
<td>Log</td>
</tr>
<tr>
<td>ITEM (for flicker, displayed on models with the voltage fluctuation and flicker measurement (/FL) option)</td>
<td></td>
</tr>
<tr>
<td>Display Elem.</td>
<td>Element1</td>
</tr>
<tr>
<td>Limit Settings</td>
<td></td>
</tr>
<tr>
<td>Judgement</td>
<td></td>
</tr>
<tr>
<td>dc</td>
<td>ON</td>
</tr>
<tr>
<td>dmax</td>
<td>ON</td>
</tr>
<tr>
<td>d(t)</td>
<td>ON</td>
</tr>
<tr>
<td>Pst</td>
<td>ON</td>
</tr>
<tr>
<td>Pt</td>
<td>ON</td>
</tr>
<tr>
<td>Limit</td>
<td></td>
</tr>
<tr>
<td>dc</td>
<td>3.30%</td>
</tr>
<tr>
<td>dmax</td>
<td>4.00%</td>
</tr>
<tr>
<td>d(t)</td>
<td>500 ms, 3.30%</td>
</tr>
<tr>
<td>Pst</td>
<td>1.00</td>
</tr>
<tr>
<td>Pt</td>
<td>0.65</td>
</tr>
<tr>
<td>Pt N value</td>
<td>12</td>
</tr>
<tr>
<td>FORM (for flicker, displayed on models with the voltage fluctuation and flicker measurement (/FL) option)</td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Flicker</td>
</tr>
<tr>
<td>Flicker Settings</td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>Element1</td>
</tr>
<tr>
<td>Un mode</td>
<td>Auto</td>
</tr>
<tr>
<td>Un Set</td>
<td>230.00 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Interval</td>
<td>10 min 00 sec</td>
</tr>
<tr>
<td>Count</td>
<td>12</td>
</tr>
<tr>
<td>dmin</td>
<td>0.10%</td>
</tr>
<tr>
<td>ITEM (for cycle by cycle, displayed on models with the cycle-by-cycle measurement (/CC) option)</td>
<td></td>
</tr>
<tr>
<td>List Item No.</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Function</td>
<td>Freq U I P S</td>
</tr>
<tr>
<td>Element/Σ</td>
<td>Element1 Element1 Element1 Element1 Element1</td>
</tr>
<tr>
<td>Cursor No.</td>
<td>1</td>
</tr>
<tr>
<td>FORM (for cycle by cycle, displayed on models with the cycle-by-cycle measurement (/CC) option)</td>
<td></td>
</tr>
<tr>
<td>Sync Source</td>
<td>U1</td>
</tr>
<tr>
<td>Sync Slope</td>
<td>Rise</td>
</tr>
<tr>
<td>Trigger</td>
<td>Common with FORM (for Wave)</td>
</tr>
<tr>
<td>Cycle Count</td>
<td>100</td>
</tr>
<tr>
<td>Time out</td>
<td>10</td>
</tr>
<tr>
<td>USER SET</td>
<td></td>
</tr>
<tr>
<td>Function1</td>
<td>U+peak</td>
</tr>
<tr>
<td>Function2</td>
<td>U-peak</td>
</tr>
<tr>
<td>Function3</td>
<td>I+peak</td>
</tr>
<tr>
<td>Function4</td>
<td>I-peak</td>
</tr>
</tbody>
</table>
Appendix 2 List of Initial Settings and Display Order of Numeric Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURSOR (for Wave)</td>
<td>Off</td>
</tr>
<tr>
<td>Wave Cursor</td>
<td>Off</td>
</tr>
<tr>
<td>Wave C1 Trace</td>
<td>U1</td>
</tr>
<tr>
<td>Wave C2 Trace</td>
<td>I1</td>
</tr>
<tr>
<td>Cursor Path</td>
<td>Max</td>
</tr>
<tr>
<td>Wave C1 +</td>
<td>10.0 ms</td>
</tr>
<tr>
<td>Wave C2 ×</td>
<td>40.0 ms</td>
</tr>
<tr>
<td>CURSOR (for Bar, displayed on models with the advanced computation (/G6) or harmonic measurement (/G5) option)</td>
<td>Off</td>
</tr>
<tr>
<td>Bar Cursor</td>
<td>Off</td>
</tr>
<tr>
<td>Bar C1 +</td>
<td>1 order</td>
</tr>
<tr>
<td>Bar C2 ×</td>
<td>15 order</td>
</tr>
<tr>
<td>CURSOR (for Trend)</td>
<td>Off</td>
</tr>
<tr>
<td>Trend Cursor</td>
<td>Off</td>
</tr>
<tr>
<td>Trend C1 Trace</td>
<td>T1</td>
</tr>
<tr>
<td>Trend C2 Trace</td>
<td>T2</td>
</tr>
<tr>
<td>Trend C1 +</td>
<td>100</td>
</tr>
<tr>
<td>Trend C2 ×</td>
<td>900</td>
</tr>
<tr>
<td>Cursor (for MATH, displayed on models with the advanced computation (/G6) option)</td>
<td>Common to Cursor (for Wave)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cursor (for FFT, displayed on models with the advanced computation (/G6) option)</td>
<td>Off</td>
</tr>
<tr>
<td>Trend Cursor</td>
<td>Off</td>
</tr>
<tr>
<td>Trend C1 Trace</td>
<td>T1</td>
</tr>
<tr>
<td>Trend C2 Trace</td>
<td>T2</td>
</tr>
<tr>
<td>Trend C1 +</td>
<td>100</td>
</tr>
<tr>
<td>Trend C2 ×</td>
<td>900</td>
</tr>
<tr>
<td>HRM SET</td>
<td>Normal</td>
</tr>
<tr>
<td>Freq Band</td>
<td>Normal</td>
</tr>
<tr>
<td>PLL Source</td>
<td>U1</td>
</tr>
<tr>
<td>Min Order</td>
<td>1</td>
</tr>
<tr>
<td>Max Order</td>
<td>100</td>
</tr>
<tr>
<td>T/h Formula</td>
<td>1/Total</td>
</tr>
<tr>
<td>STORE</td>
<td>Off</td>
</tr>
<tr>
<td>Store Status</td>
<td>Off</td>
</tr>
<tr>
<td>STORE SET</td>
<td>Store</td>
</tr>
<tr>
<td>Mode</td>
<td>Store</td>
</tr>
<tr>
<td>Store To</td>
<td>Memory</td>
</tr>
<tr>
<td>Store Setting</td>
<td>Manual</td>
</tr>
<tr>
<td>Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>Count</td>
<td>100</td>
</tr>
<tr>
<td>Store Interval</td>
<td>00:00:00</td>
</tr>
<tr>
<td>Store Item</td>
<td>Numeric</td>
</tr>
<tr>
<td>List Item</td>
<td>Element1</td>
</tr>
<tr>
<td></td>
<td>U, I, P, S, Q, λ, φ, FreqU, FreqI</td>
</tr>
<tr>
<td>FILE</td>
<td>Setup</td>
</tr>
<tr>
<td>File Item</td>
<td>Setup</td>
</tr>
<tr>
<td>IMAGE SAVE</td>
<td>TIFF</td>
</tr>
<tr>
<td>Format</td>
<td>TIFF</td>
</tr>
<tr>
<td>Color</td>
<td>Off</td>
</tr>
<tr>
<td>AUTO Naming</td>
<td>ON</td>
</tr>
<tr>
<td>NULL</td>
<td>Off</td>
</tr>
<tr>
<td>Null</td>
<td>Off</td>
</tr>
</tbody>
</table>
Appendix 2 List of Initial Settings and Display Order of Numeric Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR SET (displayed on models with the motor evaluation function on the motor version)</td>
<td></td>
</tr>
<tr>
<td>Scaling (Speed)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Scaling (Torque)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Scaling (Pm)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Unit (Speed)</td>
<td>rpm</td>
</tr>
<tr>
<td>Unit (Torque)</td>
<td>Nm</td>
</tr>
<tr>
<td>Unit (Pm)</td>
<td>W</td>
</tr>
<tr>
<td>Analog</td>
<td></td>
</tr>
<tr>
<td>Auto Range (Speed)</td>
<td>Off</td>
</tr>
<tr>
<td>Auto Range (Torque)</td>
<td>Off</td>
</tr>
<tr>
<td>Range (Speed)</td>
<td>20V</td>
</tr>
<tr>
<td>Range (Torque)</td>
<td>20V</td>
</tr>
<tr>
<td>Line Filter</td>
<td>Off</td>
</tr>
<tr>
<td>Sync Source</td>
<td>None</td>
</tr>
<tr>
<td>Pulse</td>
<td></td>
</tr>
<tr>
<td>Range Upper (Speed)</td>
<td>10000.0000</td>
</tr>
<tr>
<td>Range Upper (Torque)</td>
<td>50.0000</td>
</tr>
<tr>
<td>Range Lower (Speed)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Range Lower (Torque)</td>
<td>-50.0000</td>
</tr>
<tr>
<td>Rated Upper (Torque)</td>
<td>50.0000</td>
</tr>
<tr>
<td>Rated Upper (Rated Freq)</td>
<td>15000 Hz</td>
</tr>
<tr>
<td>Rated Lower (Torque)</td>
<td>-50.0000</td>
</tr>
<tr>
<td>Rated Lower (Rated Freq)</td>
<td>5000 Hz</td>
</tr>
<tr>
<td>Pulse N (Speed)</td>
<td>60</td>
</tr>
<tr>
<td>Sync Speed</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>2</td>
</tr>
<tr>
<td>Source</td>
<td>I1</td>
</tr>
<tr>
<td>PRINT MENU (applies to models with the built-in printer option)</td>
<td></td>
</tr>
<tr>
<td>Print to</td>
<td>Built-in</td>
</tr>
<tr>
<td>Print Format</td>
<td>Hard Copy</td>
</tr>
<tr>
<td>D/A Output (applies to models with the D/A output option)</td>
<td></td>
</tr>
<tr>
<td>Item No.</td>
<td>Function</td>
</tr>
<tr>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>Q</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
</tr>
<tr>
<td>8</td>
<td>fU</td>
</tr>
<tr>
<td>9</td>
<td>fi</td>
</tr>
<tr>
<td>10 to 20</td>
<td>–</td>
</tr>
</tbody>
</table>
Appendix 2 List of Initial Settings and Display Order of Numeric Data

Settings That Are Not Initialized through Initialization (MISC-Initialize Settings)

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISC</td>
<td></td>
</tr>
<tr>
<td>Remote Control</td>
<td>GP-IB</td>
</tr>
<tr>
<td>Device*¹</td>
<td>GP-IB</td>
</tr>
<tr>
<td>Address*¹</td>
<td>1</td>
</tr>
<tr>
<td>RS232 (displayed on models with the RS232 communication option)</td>
<td></td>
</tr>
<tr>
<td>Baud Rate*¹</td>
<td>19200</td>
</tr>
<tr>
<td>Format*¹</td>
<td>8-No-1</td>
</tr>
<tr>
<td>Rx-Tx*¹</td>
<td>No-No</td>
</tr>
<tr>
<td>Terminator*¹</td>
<td>Cr+Lf</td>
</tr>
<tr>
<td>Date/Time</td>
<td></td>
</tr>
<tr>
<td>Display*¹</td>
<td>On</td>
</tr>
<tr>
<td>Type*¹</td>
<td>Manual</td>
</tr>
<tr>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>Message Language*¹</td>
<td>ENG</td>
</tr>
<tr>
<td>Menu Language¹</td>
<td>ENG</td>
</tr>
<tr>
<td>Alphabet Font¹</td>
<td>Gothic</td>
</tr>
<tr>
<td>LCD Brightness</td>
<td>2</td>
</tr>
<tr>
<td>Key Lock*²</td>
<td>Off</td>
</tr>
<tr>
<td>Shift Lock</td>
<td>Off</td>
</tr>
<tr>
<td>Crest Factor</td>
<td>CF3</td>
</tr>
<tr>
<td>Graph Color</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Default</td>
</tr>
<tr>
<td>Text Color</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Preset 1</td>
</tr>
</tbody>
</table>

*¹ Settings that are not initialized through initialization (MISC-Initialize Settings)

*² Initialized when the *RST command is sent from the communication interface.
Example of the Display Order of Numeric Data (Example for a Model with Four Input Elements Installed)

- When the order of the numeric data is reset, the measurement function data are displayed in the order given in the next table.
- For details on each display, see section 5.1 as well as sections 1.1 and 7.1 in the *Expansion Function User's Manual IM760301-51E*.

4 Item Display

<table>
<thead>
<tr>
<th>Display Page</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>U2</td>
<td>U3</td>
<td>U4</td>
<td>UΣA</td>
<td>UΣB</td>
<td>WP1</td>
<td>WPΣA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I1</td>
<td>I2</td>
<td>I3</td>
<td>I4</td>
<td>ΣA</td>
<td>ΣB</td>
<td>WP2</td>
<td>WPΣB</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>PΣA</td>
<td>PΣB</td>
<td>WP3</td>
<td>F1</td>
<td>F1</td>
<td>Torque*1</td>
</tr>
<tr>
<td>λ1</td>
<td>λ2</td>
<td>λ3</td>
<td>λ4</td>
<td>λΣA</td>
<td>λΣB</td>
<td>WP4</td>
<td>F2</td>
<td>F2</td>
<td>Pm*1</td>
</tr>
</tbody>
</table>

8 Item Display

<table>
<thead>
<tr>
<th>Display Page</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>U2</td>
<td>U3</td>
<td>U4</td>
<td>UΣA</td>
<td>UΣB</td>
<td>WP1</td>
<td>WPΣA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I1</td>
<td>I2</td>
<td>I3</td>
<td>I4</td>
<td>ΣA</td>
<td>ΣB</td>
<td>WP2</td>
<td>WPΣB</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>PΣA</td>
<td>PΣB</td>
<td>WP2</td>
<td>WPΣB</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>SΣA</td>
<td>SΣB</td>
<td>q</td>
<td>q2</td>
<td>q2</td>
<td>Speed*1</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>QΣA</td>
<td>QΣB</td>
<td>WP3</td>
<td>F1</td>
<td>F1</td>
<td>Torque*1</td>
</tr>
<tr>
<td>λ1</td>
<td>λ2</td>
<td>λ3</td>
<td>λ4</td>
<td>λΣA</td>
<td>λΣB</td>
<td>q</td>
<td>q3</td>
<td>q3</td>
<td>–</td>
</tr>
<tr>
<td>φ1</td>
<td>φ2</td>
<td>φ3</td>
<td>φ4</td>
<td>φΣA</td>
<td>φΣB</td>
<td>WP4</td>
<td>F3</td>
<td>F3</td>
<td>–</td>
</tr>
<tr>
<td>fU(FreqU)1</td>
<td>fU(FreqU)2</td>
<td>fU(FreqU)3</td>
<td>fU(FreqU)4</td>
<td>–</td>
<td>–</td>
<td>q4</td>
<td>F4</td>
<td>F4</td>
<td>Pm*1</td>
</tr>
</tbody>
</table>

16 Item Display

<table>
<thead>
<tr>
<th>Display Page</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>U2</td>
<td>U3</td>
<td>U4</td>
<td>UΣA</td>
<td>UΣB</td>
<td>WP1</td>
<td>WPΣA</td>
<td>F1</td>
<td>–</td>
</tr>
<tr>
<td>I1</td>
<td>I2</td>
<td>I3</td>
<td>I4</td>
<td>ΣA</td>
<td>ΣB</td>
<td>WP2</td>
<td>WPΣB</td>
<td>F2</td>
<td>–</td>
</tr>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>PΣA</td>
<td>PΣB</td>
<td>WP1</td>
<td>WP-3</td>
<td>WPΣ-3</td>
<td>F3</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>SΣA</td>
<td>SΣB</td>
<td>q</td>
<td>q2</td>
<td>q2</td>
<td>–</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>QΣA</td>
<td>QΣB</td>
<td>WP3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>λ1</td>
<td>λ2</td>
<td>λ3</td>
<td>λ4</td>
<td>λΣA</td>
<td>λΣB</td>
<td>q</td>
<td>q3</td>
<td>q3</td>
<td>–</td>
</tr>
<tr>
<td>φ1</td>
<td>φ2</td>
<td>φ3</td>
<td>φ4</td>
<td>φΣA</td>
<td>φΣB</td>
<td>WP4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pc1</td>
<td>Pc2</td>
<td>Pc3</td>
<td>Pc4</td>
<td>PcΣA</td>
<td>PcΣB</td>
<td>WP1</td>
<td>WP3</td>
<td>WPΣA</td>
<td>F1</td>
</tr>
<tr>
<td>fU(FreqU)1</td>
<td>fU(FreqU)2</td>
<td>fU(FreqU)3</td>
<td>fU(FreqU)4</td>
<td>–</td>
<td>–</td>
<td>q4</td>
<td>F4</td>
<td>F4</td>
<td>Pm*1</td>
</tr>
</tbody>
</table>

*Speed*1: Speed
*Torque*1: Torque
*SyncSp*1: SyncSp
*Slip*1: Slip
*Pm*1: Pm
*SyncSp*1: SyncSp

Appendix 2 List of Initial Settings and Display Order of Numeric Data

ALL Item Display

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6<sup>2</sup></th>
<th>7<sup>2</sup></th>
<th>8<sup>2</sup></th>
<th>9<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U+pk</td>
<td>Time</td>
<td>η<sub>1</sub></td>
<td>F1</td>
<td>U(k)</td>
<td>U(k)</td>
<td>Uthd</td>
<td>φU1-U2</td>
</tr>
<tr>
<td>I</td>
<td>U-pk</td>
<td>Wp</td>
<td>η<sub>2</sub></td>
<td>F2</td>
<td>l(k)</td>
<td>l(k)</td>
<td>Itthd</td>
<td>φU1-U3</td>
</tr>
<tr>
<td>P</td>
<td>I+pk</td>
<td>WP+</td>
<td>η<sub>3</sub></td>
<td>F3</td>
<td>P(k)</td>
<td>P(k)</td>
<td>Pthd</td>
<td>φU1-11</td>
</tr>
<tr>
<td>S</td>
<td>I-pk</td>
<td>WP-</td>
<td>η<sub>4</sub></td>
<td>F4</td>
<td>S(k)</td>
<td>Q(k)</td>
<td>Uthf</td>
<td>φU1-12</td>
</tr>
<tr>
<td>Q</td>
<td>CIU</td>
<td>q</td>
<td>∆F<sub>1</sub></td>
<td>F5</td>
<td>Q(k)</td>
<td>Z(k)</td>
<td>Itthf</td>
<td>φU1-13</td>
</tr>
<tr>
<td>λ</td>
<td>CIIF</td>
<td>q+</td>
<td>∆F<sub>2</sub></td>
<td>F6</td>
<td>λ(k)</td>
<td>Rs(k)</td>
<td>Uthf</td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>Cf</td>
<td>q-</td>
<td>∆F<sub>3</sub></td>
<td>F7</td>
<td>φ(k)</td>
<td>Xs(k)</td>
<td>Itthf</td>
<td></td>
</tr>
<tr>
<td>fU(FreqU)</td>
<td>WS</td>
<td>F8</td>
<td>φU(k)</td>
<td>Rp(k)</td>
<td>hvf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fI(FreqI)</td>
<td>WQ</td>
<td>Speed<sup>1</sup></td>
<td>F9</td>
<td>φI(k)</td>
<td>Xp(k)</td>
<td>hcf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Torque<sup>1</sup></td>
<td>F10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyncSp<sup>1</sup></td>
<td>F11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slip<sup>1</sup></td>
<td>F12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pm<sup>1</sup></td>
<td>F13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Left Side of the SingleList² or DualList² Display

Display Page

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>U2</td>
<td>U3</td>
<td>U4</td>
<td>U2A</td>
<td>U2B</td>
<td>F1</td>
</tr>
<tr>
<td>I1</td>
<td>I2</td>
<td>I3</td>
<td>I4</td>
<td>I2A</td>
<td>I2B</td>
<td>F2</td>
</tr>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P2A</td>
<td>P2B</td>
<td>F3</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>S2A</td>
<td>S2B</td>
<td>F4</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q2A</td>
<td>Q2B</td>
<td>F5</td>
</tr>
<tr>
<td>λ<sub>1</sub></td>
<td>λ<sub>2</sub></td>
<td>λ<sub>3</sub></td>
<td>λ<sub>4</sub></td>
<td>λ<sub>3</sub>A</td>
<td>λ<sub>2</sub>B</td>
<td>F6</td>
</tr>
<tr>
<td>φ<sub>1</sub></td>
<td>φ<sub>2</sub></td>
<td>φ<sub>3</sub></td>
<td>φ<sub>4</sub></td>
<td>φU1-U2</td>
<td>φU1-U2</td>
<td>F7</td>
</tr>
<tr>
<td>Uthd1</td>
<td>Uthd2</td>
<td>Uthd3</td>
<td>Uthd4</td>
<td>φU1-U3</td>
<td>φU1-U3</td>
<td>F8</td>
</tr>
<tr>
<td>Itthd1</td>
<td>Itthd2</td>
<td>Itthd3</td>
<td>Itthd4</td>
<td>φU1-11</td>
<td>φU1-11</td>
<td>F9</td>
</tr>
<tr>
<td>Pthd1</td>
<td>Pthd2</td>
<td>Pthd3</td>
<td>Pthd4</td>
<td>φU1-12</td>
<td>φU1-12</td>
<td>F10</td>
</tr>
<tr>
<td>Uthf1</td>
<td>Uthf2</td>
<td>Uthf3</td>
<td>Uthf4</td>
<td>φU1-13</td>
<td>φU1-13</td>
<td>F11</td>
</tr>
<tr>
<td>Itthf1</td>
<td>Itthf2</td>
<td>Itthf3</td>
<td>Itthf4</td>
<td></td>
<td></td>
<td>F12</td>
</tr>
<tr>
<td>Util1</td>
<td>Util2</td>
<td>Util3</td>
<td>Util4</td>
<td></td>
<td></td>
<td>F13</td>
</tr>
<tr>
<td>Ititf1</td>
<td>Ititf2</td>
<td>Ititf3</td>
<td>Ititf4</td>
<td></td>
<td></td>
<td>F14</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

¹ Displayed only on models with the motor evaluation function (motor version).

² Displayed only on models with the advanced computation (/G6) or harmonic measurement (/G5) option.
Appendix 3 ASCII Header File Format

When waveform display data (Wave) is saved, the following two files are automatically created in the directory.

- Waveform display data file (.wvf)
- ASCII header file (.hdr)

The ASCII header files explained here cannot be viewed on the WT3000. Use the data in such cases as when analyzing the waveforms on your PC.

//YOKOGAWA ASCII FILE FORMAT

$PublicInfo

FormatVersion 1.11
Model WT3000
Endian Big
DataFormat Trace
GroupNumber 3
TraceTotalNumber 10
DataOffset 8192

$Group1
TraceNumber 4
BlockNumber 1
TraceName U1 I1 U2 I2
BlockSize 1002 1002 1002 1002
VResolution 1.0000000E+00 1.0000000E+00 1.0000000E+00 1.0000000E+00
VOffset 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
VDataType FS4 FS4 FS4 FS4
VUnit V A V A
VPlusOverData ? ? ? ?
VMinusOverData ? ? ? ?
VIllegalData ? ? ? ?
VMaxData 9.000000e+02 3.000000e+03 3.000000e+03 1.500000e+02
VMinData -9.000000e+02 -3.000000e+03 -3.000000e+03 -1.500000e+02
HResolution 2.0000000E-05 2.0000000E-05 2.0000000E-05 2.0000000E-05
HOffset 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
HUnit sec sec sec sec
Date 2001/06/30 2001/06/30 2001/06/30 2001/06/30
Time 07:03:03 07:03:03 07:03:03 07:03:03

$Group2
TraceNumber 4
BlockNumber 1
TraceName U3 I3 U4 I4
BlockSize 1002 1002 1002 1002
VResolution 1.0000000E+00 1.0000000E+00 1.0000000E+00 1.0000000E+00
Appendix 3 ASCII Header File Format

<table>
<thead>
<tr>
<th>VOffset</th>
<th>0.0000000E+00</th>
<th>0.0000000E+00</th>
<th>0.0000000E+00</th>
<th>0.0000000E+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDataType</td>
<td>FS4</td>
<td>FS4</td>
<td>FS4</td>
<td>FS4</td>
</tr>
<tr>
<td>VUnit</td>
<td>V</td>
<td>A</td>
<td>V</td>
<td>A</td>
</tr>
<tr>
<td>VPlusOverData</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>VMinusOverData</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>VIllegalData</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>VMaxData</td>
<td>3.000000e+03</td>
<td>1.500000e+01</td>
<td>3.000000e+03</td>
<td>1.500000e+01</td>
</tr>
<tr>
<td>VMinData</td>
<td>-3.000000e+03</td>
<td>-1.500000e+01</td>
<td>-3.000000e+03</td>
<td>-1.500000e+01</td>
</tr>
<tr>
<td>HResolution</td>
<td>2.0000000E-05</td>
<td>2.0000000E-05</td>
<td>2.0000000E-05</td>
<td>2.0000000E-05</td>
</tr>
<tr>
<td>HOffset</td>
<td>0.0000000E+00</td>
<td>0.0000000E+00</td>
<td>0.0000000E+00</td>
<td>0.0000000E+00</td>
</tr>
<tr>
<td>HUnit</td>
<td>sec</td>
<td>sec</td>
<td>sec</td>
<td>sec</td>
</tr>
<tr>
<td>Date</td>
<td>2001/06/30</td>
<td>2001/06/30</td>
<td>2001/06/30</td>
<td>2001/06/30</td>
</tr>
<tr>
<td>Time</td>
<td>07:03:03</td>
<td>07:03:03</td>
<td>07:03:03</td>
<td>07:03:03</td>
</tr>
</tbody>
</table>

$Group3

TraceNumber 2
BlockNumber 1
TraceName Speed Torque
BlockSize 1002 1002
VResolution 1.0000000E+00 1.0000000E+00
VOffset 0.0000000E+00 0.0000000E+00
VDataType FS4 FS4
VUnit rpm Nm
VPlusOverData ? ?
VMinusOverData ? ?
VIllegalData ? ?
VMaxData 2.000000e+01 2.000000e+01
VMinData -2.000000e+01 -2.000000e+01
HResolution 2.0000000E-05 2.0000000E-05
HOffset 0.0000000E+00 0.0000000E+00
HUnit sec sec
Date 2001/08/30 2001/08/30
Time 07:03:03 07:03:03

$PrivateInfo

ModelVersion 1.01

(Note) The header file is a common file used by YOKOGAWA’s measuring instruments. Therefore, data that is not required by the WT3000 (0s) is also included.
Appendix 3 ASCII Header File Format

• $PublicInfo (Common Information)
 FormatVersion: Header file version No. (common to YOKOGAWA’s header files)
 Model: Model name
 Endian: Endian mode when saving data (Big)*1
 DataFormat: Storage format of the binary waveform display data (Trace)*2
 GroupNumber: The number of “$Group”s indicated below
 TraceTotalNumber: Total number of target waveforms
 DataOffset: Start position of the binary waveform display data*3

• $Group1 (Group Information)
 TraceNumber: Number of waveforms in this group
 BlockNumber: Number of blocks in this group*4
 TraceName: Name of each waveform
 BlockSize: Number of data points in a single block of each waveform
 VResolution: Value of coefficient VResolution of the Y-axis conversion equation of each waveform*5
 VOffset: Value of coefficient VOffset of the Y-axis conversion equation of each waveform*5
 VDataType: Type of binary waveform display data of each waveform*6
 VUnit: Unit used on the Y-axis of each waveform (no effect on the data)
 VPlusOverData: Error data when the binary data of each waveform is greater than or equal to this value
 VMinusOverData: Error data when the binary data of each waveform is less than or equal to this value
 VMaxData: Maximum value of the binary data of each waveform
 VMinData: Minimum value of the binary data of each waveform
 HResolution: Value of coefficient HResolution of the X-axis conversion equation of each waveform
 HOffset: Value of coefficient HOffset of the X-axis conversion equation of each waveform
 HUnit: Unit used on the X-axis of each waveform (no effect on the data)
 Date: Date when the trigger occurred
 Time: Time when the trigger occurred

• $PrivateInfo (Model-Specific Information)
 ModelVersion: Version No. of the instrument

*1 Endian mode when saving data
 Big: Motorola 68000-family data

*2 Storage format of the binary waveform display data
 Trace: Format in which each block contains a waveform

*3 Start position of the binary waveform display data
 Offset from the beginning of the file. Always 8192 on the WT3000

*4 Maximum number of blocks in the group
 Maximum number of blocks when the number of blocks varies for each waveform. Always 1 on the WT3000.

*5 Y axis conversion equation for each waveform
 Y-axis value = VResolution × raw data + VOffset

*6 Data type
 ISn: n-byte signed integer
 IU: n-byte unsigned integer
 FSn: n-byte signed real number
 FU: n-byte unsigned real number
 Bm: m-bit data
This chapter describes the basics of power, harmonic, and RLC of AC circuits.

Power

Electrical energy is converted into other types of energy for use such as in the form of heat for electrical heaters and furnaces, turning force for motors, and light for fluorescent lamps or mercury lamps. Electric power refers to the work that electricity performs on these types of loads expressed in terms of the quantity per unit time. The unit is watts (W), and electric energy that performs 1 joule of work in 1 second equals 1 W.

- **DC Power**
 DC power $P \ [\text{W}]$ is determined by the product of the applied voltage $U \ [\text{V}]$ and the current $I \ [\text{A}]$ that flows.
 $$P = UI \ [\text{W}]$$
 In the example below, this amount of electric energy is retrieved from the power supply and consumed by resistance $R \ [\Omega]$ every second.

- **Alternating Current (AC)**
 Normally, the power supplied by the power company is alternating current, and the waveform is sinusoidal. The size of alternating current can be expressed in terms of the instantaneous value, maximum value, rms value, and mean value. Normally, it is expressed in terms of the rms value.
 The instantaneous value i of the sinusoidal alternating current is expressed by $I_{\text{ms}}\sin\omega t$ (where I_{ms} is the maximum value of current, ω is the angular velocity defined as $\omega = 2\pi f$, and f is the frequency of the sinusoidal alternating current). The thermal action of this alternating current* is proportional to i^2, and varies as shown in the figure below.
 * The phenomenon in which electric energy is converted to heat energy due to the current flowing through the resistor.

 The rms value (effective value) is the DC value that generates the same thermal action as the alternating current. If we denote the DC value of the same thermal action as I, we get
 $$I = \sqrt{\text{The average of } i^2 \text{ over one cycle}} = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} i^2 \, dt} = \frac{I_{\text{ms}}}{\sqrt{2}}$$
 Because this value corresponds to the root mean square of the instantaneous values over 1 period, normally the effective value is denoted using the abbreviation *rms*.
In the case of the mean value, simply taking the average over 1 period of the sine wave results in zero. Therefore, the average is taken over 1 period of absolute values. As with the rms value, if we denote the average value of the current of instantaneous values \(i = I_m \sin \omega t \) as \(I_{mn} \), we obtain

\[
I_{mn} = \frac{1}{2\pi} \int_{0}^{2\pi} |i| \, dt = \frac{2}{\pi} \frac{1}{2\pi} = \frac{1}{\pi} \frac{I_m}{2}
\]

These relationships also apply to a sinusoidal voltage.

The maximum value, rms value, and average value of a sinusoidal alternating current are related as shown below. Crest factor and form factor are used to define the tendency of the AC waveform.

Crest factor (crest factor) = \(\frac{\text{Maximum value}}{\text{Rms value}} \)

Form factor (form factor) = \(\frac{\text{Rms value}}{\text{Average value}} \)

• **Vector Display of Alternating Current**

In general, the instantaneous value of voltage and current is expressed with the following equations.

- **Voltage:** \(u = U_m \sin \omega t \)
- **Current:** \(i = I_m \sin (\omega t - \phi) \)

The time offset between the voltage and current is called a phase difference, and \(\phi \) is called a phase angle. This time difference is mainly caused by the load to which the power is supplied. In general, the phase difference is zero when the load consists of only resistance. If the load consists of inductance (coiled object), the current lags the voltage. If the load consists of capacitance, the current leads the voltage.

Vector display is used to easily convey the size and phase relationships between the voltage and current. The upward direction on the vertical axis is the reference, and a positive phase angle is represented by an angle in the counterclockwise direction. Normally, a dot is placed above the symbol representing the quantity when explicitly indicating that it is a vector. The size of the vector represents the rms value.
• **Wiring Three-Phase AC Power and Load**
 Generally, the power lines are connected using star wiring or delta wiring on three-phase power supplies and loads.

![Star wiring](image)

![Delta wiring](image)

• **Vector Display of Three-Phase AC Power or Load**
 Generally, the voltage of each phase of a three-phase AC power or load is offset by 120°. Below is an illustration of a three-phase AC power using vectors. The voltage of each phase is called the phase voltage, and the voltage between each phase is called the line voltage.

![Vector representation](image)

If the power or load is connected in a delta wiring configuration and no neutral line is present, the phase voltage cannot be measured. In this case, the line voltage is measured. In addition, the line voltage is sometimes measured when measuring a three-phase AC power using two single-phase wattmeters (called the two-wattmeter method). If the magnitude of the phase voltage of each phase is equal and each phase is offset by 120°, the line voltage is $\sqrt{3}$ times the phase voltage, and the phase is offset by 30°.

Below is a vector representation of the relationship between the phase voltage and line current of a three-phase AC voltage or load whose current phase is lagging the voltage phase by ϕ.
• AC Power

Because there is phase difference between the voltage and current due to the load, AC power cannot be determined as easily as DC power.

If we denote the instantaneous voltage as \(u = U_m \sin(\omega t) \) and the instantaneous current as \(i = I_m \sin(\omega t - \phi) \), the instantaneous power of AC power \(p \) is as follows:

\[
p = u \times i = U_m I_m \sin(\omega t) \sin(\omega t - \phi) = UI \cos \phi - UI \cos(2\omega t - \phi)
\]

where \(U \) and \(I \) represent the rms voltage and current, respectively.

\(p \) is the sum of the time-independent term “\(UI \cos \phi \)” and the AC component term of the voltage or current at twice the frequency “\(-UI \cos(2\omega t - \phi) \).”

AC power refers to the average power over 1 period. By taking the average over 1 period, AC power \(P \) becomes

\[
P = UI \cos \phi \text{ [W]}
\]

The power varies even with the same voltage and current depending on the phase difference \(\phi \). The section above the horizontal axis in the figure below represents positive power (power supplied to the load), and the section below the axis represents negative power (power fed back from the load). The difference between the positive and negative powers is the power consumed by the load. As the phase difference between the voltage and current increases, the negative power increases. At \(\phi = \pi/2 \), the positive and negative powers are equal, and the load consumes no power.
• **Active Power and Power Factor**

In alternating electrical current, not all of the power calculated by the product of voltage and current UI is consumed. The product UI is called apparent power S. The unit is VA (volt-ampere). The apparent power is used to express the electrical capacity of a device that runs on AC electricity.

The true power that a device consumes is called active power P (or effective power), and this corresponds to the aforementioned AC power.

$$S = UI \text{ [VA]}$$

$$P = U\cos \phi \text{ [W]}$$

$\cos \phi$ indicates the ratio of the apparent power that becomes the true power, and this is called power factor λ.

• **Reactive Power**

If current I lags voltage U by ϕ, current I can be broken down into a component in the same direction as voltage U, $I\cos \phi$, and a perpendicular component, $I\sin \phi$. Active power $P = U\cos \phi$ is the product of voltage U and current component $I\cos \phi$. On the contrary, the product of voltage U and current component $I\sin \phi$ is called the reactive power Q, and the unit is var.

$$Q = U\sin \phi \text{ [var]}$$

Below is the relationship between the apparent power S, active power P, and reactive power Q.

$$S^2 = P^2 + Q^2$$
Harmonics

Harmonics refer to sine waves whose frequency is an integer multiple of the fundamental wave (normally sine waves of commercial frequency 50-Hz or 60-Hz) excluding the fundamental frequency. The input current that flows through the power rectification circuit, phase control circuit, and other circuits used in various electric and electronic equipment generate harmonic current or voltage on the power line. When the fundamental and harmonic waves are combined, distortion occurs in the waveform, and interference sometimes occur in equipment connected to the power line.

• Terminology
Terminology related to harmonics is described below.
• Fundamental wave (fundamental component)
The sine wave with the longest period among the different sine waves derived from the periodic complex wave. Or the sine wave that has the fundamental frequency within the components of the complex wave.
• Fundamental frequency
The frequency corresponding to the longest period in the periodic complex wave. The frequency of the fundamental wave.
• Distorted wave
A wave that differs from the fundamental wave.
• Higher harmonic
A sine wave with frequency that is an integer multiple (twice or greater) of the fundamental frequency.
• Harmonic component
A waveform component with frequency that is an integer multiple (twice or greater) of the fundamental frequency.
• Harmonic distortion factor
The ratio of the rms value of the specified nth order harmonic contained in the distorted wave to the rms value of the fundamental wave (or all waves).
• Harmonic order
Integer ratio of the harmonic frequency with respect to the fundamental frequency.
• Total harmonic distortion
The ratio of the rms value of all harmonics to the rms value of the fundamental wave (or all waves).

• Interference Caused by Harmonics
Below are some of the effects on electric devices and equipment caused by harmonics.
• Condenser and series reactor
Harmonic current reduces the circuit impedance causing excessive current to flow. This results in vibration, beat, overheat, or burnout.
• Cable
Harmonic current flows through the neutral line of a three-phase, four-wire system causing the neutral line to overheat.
• Transformer
Causes magnetostrictive noise of the iron core and increases iron loss and copper loss.
• Breaker and fuse
Excessive harmonic current causes erroneous operation and fuse to blow.
• Communication line
Electromagnetic induction causes noise voltage.
• Controller
Distorted control signal causes erroneous operation.
• Audio visual equipment
Causes degradation of performance and service life, flickering of video caused by noise, and malfunction of parts.
RLC of AC Circuits

- **Resistance**
 Current \(i\) when AC voltage of instantaneous value \(u = U_m \sin \omega t\) is applied to load resistance \(R\) [\(\Omega\)] is expressed by the equation below. \(I_m\) denotes the maximum current.

\[
i = \frac{U_m}{R} \sin \omega t = I_m \sin \omega t
\]

If expressed using rms values, the equation is \(I = U/R\). There is no phase difference between a current flowing through a resistive circuit and the voltage.

- **Inductance**
 Current \(i\) when AC voltage of instantaneous value \(u = U_m \sin \omega t\) is applied to a coil load of inductance \(L\) [\(H\)] is expressed by the equation below.

\[
i = \frac{U_m}{X_L} \sin \left(\omega t - \frac{\pi}{2}\right) = I_m \sin \left(\omega t - \frac{\pi}{2}\right)
\]

If expressed using rms values, the equation is \(I = U/X_L\). \(X_L\) is called inductive reactance and is defined as \(X_L = \omega L\). The unit is \(\Omega\).
Inductance works to counter current changes (increase or decrease), and causes the current phase to lag the voltage.

- **Capacity**
 Current \(i\) when AC voltage of instantaneous value \(u = U_m \sin \omega t\) is applied to a capacitive load \(C\) [\(F\)] is expressed by the equation below.

\[
i = \frac{U_m}{X_C} \sin \left(\omega t + \frac{\pi}{2}\right) = I_m \sin \left(\omega t + \frac{\pi}{2}\right)
\]

If expressed using rms values, the equation is \(I = U/X_C\). \(X_C\) is called capacitive reactance and is defined as \(X_C = 1/\omega C\). The unit is \(\Omega\).
When the polarity of the voltage changes, the largest charging current of the same polarity as the voltage flows through the capacitor. When the voltage decreases, discharge current of opposite polarity as the voltage flows. Thus, the current phase leads the voltage.
• **Series RLC Circuit**

The equation below expresses the voltage relationship when resistance $R_S \, [\Omega]$, inductance $L \, [H]$, and capacitance $C \, [F]$ are connected in series.

\[
U = \sqrt{(URS)^2 + (UL - UC)^2} = \sqrt{(IR_S)^2 + (IXL - IXC)^2} = I\sqrt{RS^2 + XS^2}
\]

\[
I = \frac{U}{\sqrt{RS^2 + XS^2}}, \quad \phi = \arctan \frac{XS}{RS}
\]

The relationship between resistance R_S, reactance X_S, and impedance Z is expressed as follows:

\[
X_S = XL - XC \\
Z = \sqrt{RS^2 + XS^2}
\]

• **Parallel RLC Circuit**

The equation below expresses the current relationship when resistance $R_P \, [\Omega]$, inductance $L \, [H]$, and capacitance $C \, [F]$ are connected in parallel.

\[
I = \sqrt{(IR_P)^2 + (IL - IC)^2} = \sqrt{\frac{U^2}{RP^2} + \left(\frac{U}{XL} - \frac{U}{XC}\right)^2}
\]

\[
I = \frac{U}{\sqrt{\frac{1}{RP^2} + \left(\frac{1}{XL} - \frac{1}{XC}\right)^2}} = U\sqrt{\frac{1}{RP^2} + \left(\frac{1}{XP}\right)^2}
\]

\[
U = \frac{IR_PXP}{\sqrt{RP^2 + XP^2}}, \quad \phi = \arctan \frac{RP}{XP}
\]

The relationship between resistance R_P, reactance X_P, and impedance Z is expressed as follows:

\[
X_P = \frac{XLXC}{XC - XL} \\
Z = \frac{RPXP}{\sqrt{RP^2 + XP^2}}
\]
Appendix 5 For Making Accurate Measurements

Effects of Power Loss

By wiring the circuit to match the load, you can minimize the effect of the power loss on the measurement accuracy. We will consider the current source (SOURCE) and load resistance (LOAD) below.

• When the Measurement Current is Relatively Large

Wire so that the voltage measurement circuit is connected to the load side. The current measurement circuit measures the sum of current i_L flowing through the load of the circuit under measurement and the current i_V flowing through the voltage measurement circuit. Because the current flowing through the circuit under measurement is i_L, i_V is the amount of error. The input resistance of the voltage measurement circuit of the instrument is approximately 10 MΩ. If the input is 1000 V, i_V is approximately 0.1 mA (1000 V/10 MΩ). If the load current, i_L, is 1 A or more (load resistance is 1 kΩ or less), then the effect of i_V on the measurement is 0.01% or less. If the input is 100 V and 1 A, $i_V = 0.01$ mA (100 V/10 MΩ) then the effect of i_V on the measurement accuracy is 0.001% (0.01 mA/1 A).

As a reference, the relationship of the voltages and currents that produce effects of 0.01%, 0.001%, and 0.0001% are shown in the figure below.

• When the Measurement Current is Relatively Small

Wire so that the current measurement circuit is connected to the load side. In this case, the voltage measurement circuit measures the sum of the load voltage e_L and voltage drop e_I across the current measurement circuit. e_I is the amount of error in this case. The input resistance of the current measurement circuit of the instrument is 500 mΩ and 5.5 mΩ for the 2-A and 30-A input terminals, respectively. For example, if the load resistance is 1 kΩ, then the effects on the measurement accuracy is 0.05% for the 2-A input terminal (500 mΩ/1 kΩ) and 0.00055% for the 30-A input terminal (5.5 mΩ/1 kΩ).
Effects of Stray Capacitance

The effects of stray capacitance on the measurement accuracy can be minimized by connecting the current input terminal of the instrument to the side that is close to the earth potential of the power source (SOURCE).

The internal structure of the instrument is as follows:
The voltage and current measurement circuits are each enclosed in shielded cases. These shielded cases are placed inside the outer case. The shielded case of the voltage measurement circuit is connected to the \pm terminal of the voltage input terminal and the shielded case of the current measurement circuit is connected to the \pm terminal of the current input terminal. Because the outer case is insulated from the shield case, stray capacitance C_s exists. C_s is approximately 100 pF. The current generated by this stray capacitance, C_s, will cause errors.

For example, we will consider the case when one side of the power source and the outer case are grounded.

In this case, two current flows can be considered, load current i_L and the current that flows through the stray capacitance i_{Cs}. i_L flows through the current measurement circuit, then through the load, and returns to the power source (shown with a dotted line). i_{Cs} flows through the current measurement source, through the stray capacitance, and then through the earth ground of the outer case, and returns to the power source (shown with a dot-dash line).

Therefore, the current measurement circuit ends up measuring the sum of i_L and i_{Cs} even though it wants to measure only i_L. i_{Cs} is the amount of error in this case. If the voltage applied to C_s is V_{Cs} (common mode voltage), then i_{Cs} can be found using the following equation. Because the phase of i_{Cs} is ahead of the voltage by 90°, the effects of i_{Cs} on the measurement accuracy increases as the power factor gets smaller.

$$i_{Cs} = V_{Cs} \times 2\pi f \times C_s$$

When measuring high frequencies as in this instrument, this error, i_{Cs}, cannot be ignored. By connecting the current input terminal of the instrument to the side that is close to the earth potential of the power source (SOURCE), V_{Cs} becomes approximately zero and very little i_{Cs} flows.
Appendix 6 Setting the Measurement Period

The measurement period must be set properly to make correct measurements on this instrument. There are two cases for setting of the measurement period depending on the data update rate.

- When the data update rate is set to 50 ms, 100 ms, 5 s, 10 s, or 20 s
 The measurement period must be set.
- When the data update rate is set to 250 ms, 500 ms, 1 s, or 2 s
 The measurement period does not have to be set.

Details of each case are given below.

When the Data Update Rate Is Set to 50 ms, 100 ms, 5 s, 10 s, or 20 s

The WT3000 detects the period of the selected input signal using the frequency measurement circuit (see section 2.1). The measurement period is the integer multiple of this period. The WT3000 determines the measured values by taking the average of the sampled data in the measurement period. The selected input signal for defining the measurement period is called synchronization source.

Thus, the measurement period is automatically set inside the WT3000 by specifying the synchronization source. This computation method is referred to as Average for the Synchronous Source Period (ASSP). This method is effective for short data update rates and for efficient measurement of low-frequency signals.

Select the signal to be the synchronization source from the choices below.
U1, I1, U2, I2, U3, I3, U4, I4, Ext Clk (external clock), or None

- The selectable items vary depending on the installed elements. For the specifications of the Ext Clk (external clock), see section 12.7.

For example, if the synchronization source for input element 1 is set to I1, an integer multiple of the period of I1 becomes the measurement period. By averaging the sampled data in this measurement period, the WT3000 computes the measured values for input element 1 such as U1, I1, and P1.

- Deciding on Which Input, Voltage or Current, to Use for the Synchronization Source

Select an input signal with stable input level and frequency (with little distortion) for the synchronization source. Correct measured values can be obtained only if the period of the synchronization source signal is detected accurately. To see whether the frequency of the synchronization source signal is being measured correctly, display the frequency of the selected input signal on the WT3000 according to section 5.3, "Selecting the Frequency Measurement Source." The input signal whose measurement result is accurate and more stable is suitable for the synchronization source.

For example, if a switching power supply is being measured and the distortion of voltage waveforms is smaller than current waveforms, set the synchronization source to the voltage signal.
As another example, if an inverter is being measured and the distortion of current waveforms is smaller than voltage waveforms, set the synchronization source to the current signal.

![Voltage waveform and Current waveform](image)

Synchronization source setting: Current signal

- **Zero Crossing**
 - Rising (or falling) zero crossing refers to the time when the synchronization source passes through level zero (center of the amplitude) on the rising (or falling) slope.
 - The measurement period on the WT3000 is between the first rising (or falling) zero crossing and the last rising (or falling) zero crossing in the data update interval.
 - The rising or falling zero crossing is automatically selected for the one that allows the interval to be longer.

![Data update interval and Measurement period](image)

Zero crossing of the rise ramp

Zero crossing of the fall ramp

- **When the Period of the Synchronization Source Cannot Be Detected**
 - If there are less than two rising or falling zero crossings of the input signal set as the synchronization source in the data update interval, the period cannot be detected. In addition, the frequency cannot be detected if the AC amplitude is small. (For details on the detection level for frequency measurement circuit, see section 12.5.) If this happens, the entire data update interval becomes the measurement period, and the sampled data of the entire period are averaged.

![Data update interval and Measurement period](image)

The measured values of voltage and current may be unstable due to causes described above. In such case, lower the data update rate so that more periods of the input signal fit within the data update interval.
• When the Waveform of the Synchronization Source Is Distorted
Change the synchronization source to a signal that allows more stable detection of the period (change from voltage to current or from current to voltage). Also turn ON the frequency filter. For the setup procedure of the frequency filter, see section 4.8. The WT3000 applies hysteresis to the zero crossing detection to reduce the effects of noise. If the synchronization source is distorted or harmonic or noise is superposed on the signal to a level exceeding this hysteresis, zero crossing detection due to high frequency components occur frequently, and the zero crossing of the fundamental frequency cannot be detected stably. Consequently, this may cause the measured values of voltage and current to be unstable. Also, when high frequency components are superposed on the current waveform such as in the aforementioned inverter example, turn the frequency filter ON to stably detect the zero crossing. The validity of setting the filter can be verified by a more accurate and stable frequency measurement result. In this way, the frequency filter also functions as a filter for detecting the zero crossing of the synchronization source. Therefore, the frequency filter is sometimes called the synchronization source filter or zero-crossing filter.

[Diagram of frequency filter ON]

• When Measuring a Signal with No Zero Crossing due to DC Offset Superposed on the AC Signal
The measured values may be unstable if the period of the AC signal cannot be detected accurately. Change the synchronization source to a signal that allows more stable detection of the period (change from voltage to current or from current to voltage). The frequency detection circuit is AC coupled. The period of AC signals with no zero crossing due to an offset can be detected if the AC amplitude is greater than or equal to the detection level of the frequency measurement circuit (see section 12.5).

With this feature, the measurement period is set to an integer multiple of the period of the AC signal.

[Diagram of AC coupling and data update interval]

• When Measuring a DC Signal
If ripple exists on the DC signal and its level is greater than or equal to the detection level of the frequency measurement circuit (see section 12.5) and the period can be detected accurately and stably, a more accurate DC measurement becomes possible. If a large AC signal is superposed on the DC signal, a more stable measurement can be achieved by detecting its period and taking the average.

In addition, if a small fluctuating pulse noise riding on the DC signal crosses level zero, that point is detected as a zero crossing. As a result, sampled data is averaged over an unintended period, and the measured values such as voltage and current may be unstable. If the synchronization source is set to None, these types of erroneous detection can be prevented. All of the sampled data in the data update interval is used to determine the measured values. Set the synchronization source according to the measurement signal and the measurement objective.
• Setting the Synchronization Period When Measuring a Three-Phase Device

If a three-phase device is measured with input elements 1 and 2 using three-phase, three-wire system, set the synchronization source of input elements 1 and 2 to the same signal. For example, set the synchronization source of input element 1 and 2 to U1 (or I1, the same synchronization source). In effect, the measurement periods of input elements 1 and 2 match, and the Σ voltage, Σ current, and Σ power of the three-phase device can be measured with high accuracy.

Likewise, if a three-phase device is measured with input elements 1, 2, and 3 using three-phase, four-wire system, set the synchronization source of input elements 1, 2, and 3 to the same signal.

To facilitate this sort of configuration, the synchronization source setting on the WT3000 is linked to the Σ wiring unit of the wiring system (when the independent setting of input elements is OFF). If the independent setting of input elements (see section 4.2) is turned ON, the synchronization source of each input element in the Σ wiring unit can be set independently.
• Setting the Synchronization Period When Measuring the Efficiency of a Power Conversion Device

Power Transformer with Single-Phase Input and Single-Phase Output

If a device that converts single-phase AC power to single-phase DC power is measured with input elements 1 and 2, set the synchronization source of input elements 1 and 2 to the voltage (or current) on the AC power end. In the example shown in the figure below, set the synchronization source of input element 1 and 2 to U1 (or I1).

In effect, the measurement periods of input element 1 (input end) and input element 2 (output end) match, and the power conversion efficiency of the device can be measured more accurately.

Likewise, if a device that converts single-phase DC power to single-phase AC power is measured with input elements 1 (DC end) and 2 (AC end), set the synchronization source of input elements 1 and 2 to the voltage (or current) on the AC power end (input element 2). In the example shown in the figure below, set the synchronization source of input element 1 and 2 to U2 (or I2).

Power Transformer with Single-Phase DC Input and Three-Phase AC Output

If the device that converts single-phase DC power to three-phase AC power is connected and measured as shown on the next page, set the synchronization source of all input elements to the same voltage and current of element 2 and 3 on the AC power end.

In this example, set the synchronization source of input elements 1, 2, and 3 to U2 (or I2, U3, or I3). In effect, the measurement periods of the input signal and all output signals match, and the power conversion efficiency of the power conversion device can be measured more accurately.

• Single-phase DC power: Connect to input element 1.
• Three-phase AC power: Connect to input elements 2 and 3 using three-phase, three-wire system.
Power Transformer with Single-Phase AC Input and Three-Phase AC Output

If the device that converts single-phase AC power to three-phase AC power is connected and measured as shown in the figure below, set the synchronization source of input elements on the input end to the same signal and do the same for the input elements on the output end.

In this example, set the synchronization source of input element 1 to U1 (or I1), and set the synchronization source of input elements 2 and 3 to U2 (or I1, U3, or I3).

In this case, AC signals of different frequencies are measured. If the synchronization source of all input elements is set to the same signal, the measurement period of either the input signal or the output signal will not be an integer multiple of the signal which is undesirable.

- Single-phase AC power: Connect to input element 1.
- Three-phase AC power: Connect to input elements 2 and 3 using three-phase, three-wire system.

To measure the input/output efficiency with high accuracy without being affected by the synchronization source setting such as in this case or in the power measurement or efficiency measurement of aforementioned devices, set the data update rate of the WT3000 to 250 ms, 500 ms, 1 s, or 2 s. Because the measured value is computed from the Exponential Average for Measuring Period method described on the next page, the period of the input signal does not need to be detected.

Note

- The measurement period for the numeric data of the maximum value (Peak) for voltage and current is the entire span within the data update period regardless of the measurement period specified above. Therefore, the measurement period for the measurement functions U+pk, U-pk, I+pk, I-pk, CfU, and CfI that are determined from the maximum value of the voltage and current is also the entire span within the data update period.
- The measurement period of measurement functions of harmonic measurement is from the beginning of the data update interval to 9000 points at the harmonic sampling frequency regardless of the measurement period specified above.
When the Data Update Rate Is Set to 250 ms, 500 ms, 1 s, or 2 s

The measurement period is set equal to the data update interval. The measured values are determined by computing the average of all the sampled data in the data update interval through digital filtering. This computing method is called Exponential Average for Measuring Period (EAMP). In this method, the measurement period is not affected by the input signal period or the synchronization source setting. Therefore, the input signal period does not have to be detected. In addition, the measurement period always matches between all input elements. It is recommended that this method be used when it is difficult to match the measurement period between the input and output signals such as in the aforementioned example of “(3) Power Transformer with Single-Phase AC Input and Three-Phase AC Output.” In principle, this method is superior in obtaining highly stable measured values, because factors such as errors in period detection do not exist.

Exponential Average for Measuring Period

\[
Y_n = Y_{n-1} + \left(\frac{X_n - Y_{n-1}}{A} \right)
\]

- \(X_n\): \(n\)th sampled data in the measurement period.
- \(Y_n\): Output value of the \(n\)th exponential average in the measurement period.
- \(Y_{n-1}\): Output value of the \((n-1)\)th exponential average in the measurement period.
- \(A\): Constant

This equation is stacked several stages to derive the measured value. The last value in the measurement period, \(Y_n\), is displayed as the measured value.

Data Update Rate and Averaging Method

<table>
<thead>
<tr>
<th>Data update rate</th>
<th>Computing method</th>
<th>Setting the Measurement Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ms 100 ms</td>
<td>ASSP</td>
<td>Required</td>
</tr>
<tr>
<td>250 ms 500 ms 1 s 2 s</td>
<td>EAMP</td>
<td>Not required</td>
</tr>
<tr>
<td>5 s 10 s 20 s</td>
<td>ASSP</td>
<td>Required</td>
</tr>
</tbody>
</table>

ASSP: Average for the Synchronous Source Period
EAMP: Exponential Average for Measuring Period
Appendix 7 Data Update Rate and Computing Equation

AC signals fluctuate repetitively when viewed instantaneously. The power of AC signals can be measured by taking the average of the repeating periods or computing the average by filtering the data of several periods. The WT3000 automatically selects the computing method from the two averaging computations above according to the data update interval.

- **When the Data Update Rate Is 50 ms, 100 ms, 5 s, 10 s, or 20 s**
 Computation is performed using ASSP (Average for the Synchronous Source Period) on the sampled data within the data update interval to calculate the measured value. (However, integrated power \(W_p \) as well as integrated current \(q \) during DC mode are excluded.)
 This method detects the period of the input signal assigned to be the synchronous source* using the frequency measurement circuit and sets the measurement period to be an integer multiple of the input signal period. Computation including simple average is performed based on the sampled data in this measurement period. This method requires that the period of the assigned synchronous source signal be detected accurately. The synchronization source must be set when using this method. The period of the assigned synchronization source signal must also be detected accurately.
 Check to see that the frequency of the synchronous source signal is being measured correctly according to the procedures given in sections 5.1 and 5.3.
 * For a description of the synchronous source, see appendix 6, “Setting the Measurement Period.”

- **When the Data Update Rate Is 250 ms, 500 ms, 1 s, or 2 s**
 Computation is performed using EAMP (Exponential Average for Measuring Period) on the sampled data within the data update interval to calculate the measured value.
 The EAMP method sets the measurement period to be the entire data update interval. Computation including exponential average is performed by applying digital filtering on the sampled data in this measurement period. This method does not require the input signal period to be detected accurately. Therefore, you do not have to set the synchronization source.
Appendix 8 Compensation Function

This function compensates for the loss caused by the wiring of each element. The WT3000 has the following three types of correction functions to measure the power and efficiency with high accuracy.

- Wiring Compensation
- Efficiency Compensation
- Compensation for the Two-Wattmeter Method

Wiring Compensation

This function compensates for the loss caused by the wiring of each element.

- U – I
 This is used when the voltage measurement circuit is connected to the load side. The measured voltage is determined by subtracting “the voltage applied to the current terminal” from the voltage value of each element. The voltage applied to the current terminal is derived by the equation: the measured current \(\times \) the input resistance of the current terminal.

\[
\begin{align*}
\text{SOURCE} & \quad U \quad \pm \\
& \quad \pm \\
\text{LOAD} & \quad I
\end{align*}
\]

- I – U
 This is used when the current measurement circuit is connected to the load side. The measured current is determined by subtracting “the current that flows through the voltage terminal” from the current value of each element. The current that flows through the voltage terminal is derived by the equation: the measured voltage/ the input resistance of the voltage terminal.

\[
\begin{align*}
\text{SOURCE} & \quad U \quad \pm \\
& \quad \pm \\
\text{LOAD} & \quad I
\end{align*}
\]

- Compensation Details
 The measured value is determined by substituting the compensated instantaneous values \(u'(n) \) and \(i'(n) \) below into the respective equation in appendix 1.

For U-I Wiring

Compensated instantaneous voltage: \(u'(n) = u(n) – Ri \times i(n) \)

The instantaneous current is \(i(n) \).

For I-U Wiring

Compensated instantaneous current: \(i'(n) = i(n) – u(n)/Ru \)

The instantaneous voltage is \(u(n) \).

In the equations above,
- \(u(n) \): Measured instantaneous voltage (sampled data of the voltage signal)
- \(i(n) \): Measured instantaneous current (sampled data of the current signal)
- \(Ru \): Compensation value for the input resistance (10 MΩ) of the voltage input terminal
- \(Ri \): Compensation value for the input resistance (5.5 mΩ) of the direct current input terminal
Efficiency Compensation

In the efficiency equation $\eta = \frac{A}{B}$, the compensation value Err# in the table below is subtracted from denominator B according to the element or wiring unit included in numerator A.

$$\text{Err#} = U\# \times \frac{U\#}{RU} \times \text{sf#} + I\# \times I\# \times \frac{RI}{\text{sf#}}$$

Element or Wiring Unit	Compensation Err#
Element# | $\text{Err#} = U\# \times \frac{U\#}{RU} \times \text{sf#} + I\# \times I\# \times \frac{RI}{\text{sf#}}$
$\Sigma A, B$ | $\text{Err#} = \Sigma \text{Err#} \text{ (total of Err# of all elements included in } \Sigma)$

U#: Measured voltage (rms, mean, r-mean, or dc) depending on the voltage mode. # is the element number.

I#: Measured current (rms, mean, r-mean, or dc) depending on the current mode. # is the element number.

RU: Input resistance (10 MΩ) of the voltage input terminal

RI: Input resistance (5.5 mΩ) of the current input terminal

sf#: Scaling factor for power. # is the element number.

Example

$$\eta = \frac{P\Sigma A}{P\Sigma B}$$

where ΣA: Element 1 and 2, ΣB: Element 3 and 4

The efficiency compensation for above

$$\eta = \frac{P\Sigma A}{P\Sigma B - \left(\frac{U1 \times U1}{RU} \times \text{sf1} + I1 \times I1 \times \frac{RI}{\text{sf1}}\right) + \left(\frac{U2 \times U2}{RU} \times \text{sf2} + I2 \times I2 \times \frac{RI}{\text{sf2}}\right)}$$

Compensation for the Two-Wattmeter Method

The computation below is performed on the element or wiring unit wired to 3P3W (3V3A).

Example: When elements 1, 2, and 3 are set to 3P3W (3V3A)

Computation step 1: Calculation of compensation values
- Power: Compensation $SP' = \{\text{The average of } ((- (u(n)1 + u(n)2)/3) \times (i(n)1 + i(n)2 + i(n)3))\}$
- Watt hour (total): Compensation $SWP' = \{\text{WP of } ((- (u(n)1 + u(n)2)/3) \times (i(n)1 + i(n)2 + i(n)3))\}$
- Watt hour (+): Compensation $SWP(+) = \{\text{WP(+) of } ((- (u(n)1 + u(n)2)/3) \times (i(n)1 + i(n)2 + i(n)3))\}$
- Watt hour (–): Compensation $SWP(–) = \{\text{WP(–) of } ((- (u(n)1 + u(n)2)/3) \times (i(n)1 + i(n)2 + i(n)3))\}$

$u(n)$ and $i(n)$ are instantaneous voltage and current (sampled data of voltage and current signals), respectively.

Computation step 2: Add the compensation value to the measured value
- $SP'' = SP + SP' \times \text{sf#}$
- $SWP'' = SWP + SWP' \times \text{sf#}$
- $SWP(+)'' = SWP(+) + SWP(+) \times \text{sf#}$
- $SWP(–)'' = SWP(–) + SWP(–) \times \text{sf#}$

sf#: Scaling factor of the first element in the wiring unit (element 1 in this example)

Note

This function can be set only when the wiring system is set to 3P3W (3V3A) on models with the delta computation option.
Appendix 9 Key Assignments of the USB Keyboard

104 Keyboard (US)

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>AVG menu</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td>Execute STORE</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>c</td>
<td>SCALING menu</td>
<td>c</td>
<td>C</td>
</tr>
<tr>
<td>d</td>
<td>Execute HOLD</td>
<td>d</td>
<td>D</td>
</tr>
<tr>
<td>e</td>
<td>Execute ELEMENT</td>
<td>e</td>
<td>E</td>
</tr>
<tr>
<td>f</td>
<td>FILE menu</td>
<td>f</td>
<td>F</td>
</tr>
<tr>
<td>g</td>
<td>INTG menu</td>
<td>g</td>
<td>G</td>
</tr>
<tr>
<td>h</td>
<td>HRM SET menu</td>
<td>h</td>
<td>H</td>
</tr>
<tr>
<td>i</td>
<td>Execute IMAGE SAVE</td>
<td>i</td>
<td>I</td>
</tr>
<tr>
<td>j</td>
<td></td>
<td>j</td>
<td>J</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>k</td>
<td>K</td>
</tr>
<tr>
<td>l</td>
<td>LINE FILTER menu</td>
<td>l</td>
<td>L</td>
</tr>
<tr>
<td>m</td>
<td>MEASURE menu</td>
<td>m</td>
<td>M</td>
</tr>
<tr>
<td>n</td>
<td>Execute NUMERIC</td>
<td>n</td>
<td>N</td>
</tr>
<tr>
<td>o</td>
<td>OTHERS menu</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>p</td>
<td>Execute PRINT</td>
<td>p</td>
<td>P</td>
</tr>
<tr>
<td>q</td>
<td>FORM menu</td>
<td>q</td>
<td>Q</td>
</tr>
<tr>
<td>r</td>
<td>Execute RESET</td>
<td>r</td>
<td>R</td>
</tr>
<tr>
<td>s</td>
<td>SHIFT ON</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>t</td>
<td>ITEM menu</td>
<td>t</td>
<td>T</td>
</tr>
<tr>
<td>u</td>
<td>UPDATE RATE menu</td>
<td>u</td>
<td>U</td>
</tr>
<tr>
<td>v</td>
<td>WIRING menu</td>
<td>v</td>
<td>V</td>
</tr>
<tr>
<td>w</td>
<td>Execute WWVE</td>
<td>w</td>
<td>W</td>
</tr>
<tr>
<td>x</td>
<td>Execute EXT-SENSOR</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>y</td>
<td>SYNC SOURCE menu</td>
<td>y</td>
<td>Y</td>
</tr>
<tr>
<td>z</td>
<td>Execute SINGLE</td>
<td>z</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>!</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>@</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>&</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>^</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>_</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>Execute Set</td>
<td>Enter</td>
<td>Same as left</td>
</tr>
<tr>
<td>Esc</td>
<td>Execute Esc</td>
<td>Same as left</td>
<td>Execute Set</td>
</tr>
<tr>
<td>Tab</td>
<td>Back Space</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>Space</td>
<td>Same as left</td>
<td>Space</td>
<td>Same as left</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>=</td>
<td></td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>[</td>
<td></td>
<td>[</td>
<td>(</td>
</tr>
<tr>
<td>]</td>
<td></td>
<td>]</td>
<td>)</td>
</tr>
<tr>
<td>\</td>
<td></td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>;</td>
<td></td>
<td>;</td>
<td>;</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>,</td>
<td></td>
<td>,</td>
<td>></td>
</tr>
<tr>
<td>/</td>
<td></td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Caps Lock</td>
<td></td>
<td>Caps Lock</td>
<td>Same as left</td>
</tr>
</tbody>
</table>
Appendix 9 Key Assignments of the USB Keyboard

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>U RANGE up</td>
<td>Same as left</td>
<td>+Shift on the USB Keyboard</td>
</tr>
<tr>
<td>F2</td>
<td>U RANGE down</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F3</td>
<td>Execute U MODE</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F4</td>
<td>Execute U AUTO</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F5</td>
<td>I RANGE up</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F6</td>
<td>I RANGE down</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F7</td>
<td>Execute I MODE</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F8</td>
<td>Execute I AUTO</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F9</td>
<td>Execute U, I, P</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F10</td>
<td>Execute S, Q, J, φ</td>
<td>Same as left</td>
<td>+Shift on the USB Keyboard</td>
</tr>
<tr>
<td>F11</td>
<td>Execute WP, q, TIME</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F12</td>
<td>Execute FU, FI, ι</td>
<td>Same as left</td>
<td>Ω Same as left</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Execute USER</td>
<td>Insert ON</td>
<td>Same as left</td>
</tr>
<tr>
<td>PgUp</td>
<td>Execute PAGE PREVIOUS</td>
<td>Execute PAGE FIRST</td>
<td>Execute PAGE FIRST</td>
</tr>
<tr>
<td>PgDn</td>
<td>Execute PAGE NEXT</td>
<td>Execute PAGE LAST</td>
<td>Execute PAGE LAST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num Lock</td>
<td>/</td>
<td>/</td>
<td>Same as left</td>
</tr>
<tr>
<td></td>
<td>“</td>
<td>“</td>
<td>Same as left</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>Same as left</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>Same as left</td>
</tr>
<tr>
<td>Enter</td>
<td>Enter</td>
<td>Enter</td>
<td>Same as left</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric Keypad</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cursor down</td>
<td>Same as left</td>
<td>Cursor down</td>
</tr>
<tr>
<td>2</td>
<td>Execute PAGE NEXT</td>
<td>3</td>
<td>Execute PAGE NEXT</td>
</tr>
<tr>
<td>3</td>
<td>Cursor to the left</td>
<td>4</td>
<td>Cursor to the left</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Cursor to the right</td>
<td>6</td>
<td>Cursor to the right</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Cursor up</td>
<td>8</td>
<td>Cursor up</td>
</tr>
<tr>
<td>8</td>
<td>Execute PAGE PREVIOUS</td>
<td>9</td>
<td>Execute PAGE PREVIOUS</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>Insert ON</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>DELETE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shift ON on the WT3000</td>
<td>+Shift on the USB Keyboard</td>
<td>+Shift on the USB Keyboard</td>
</tr>
</tbody>
</table>
Appendix 9 Key Assignments of the USB Keyboard

109 Keyboard (Japanese)

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>AVG menu</td>
<td>Shift ON on the WT3000</td>
<td>+Shift on the USB Keyboard</td>
</tr>
<tr>
<td>b</td>
<td>Execute STORE</td>
<td>STORE SET menu</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>SCALING menu</td>
<td>MOTOR SET menu</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>Execute HOLD</td>
<td>Same as left</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>Execute ELEMENT</td>
<td>Execute ELEMENTALL</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>FILE menu</td>
<td>Same as left</td>
<td>f</td>
</tr>
<tr>
<td>g</td>
<td>INTEG menu</td>
<td>Same as left</td>
<td>g</td>
</tr>
<tr>
<td>h</td>
<td>HRM SET menu</td>
<td>Same as left</td>
<td>h</td>
</tr>
<tr>
<td>i</td>
<td>Execute IMAGE SAVE</td>
<td>IMAGE SAVE menu</td>
<td>i</td>
</tr>
<tr>
<td>j</td>
<td></td>
<td>j</td>
<td>J</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>k</td>
<td>K</td>
</tr>
<tr>
<td>l</td>
<td>LINE FILTER menu</td>
<td>FREQ FILTER menu</td>
<td>l</td>
</tr>
<tr>
<td>m</td>
<td>MEASURE menu</td>
<td>CURSOR</td>
<td>m</td>
</tr>
<tr>
<td>n</td>
<td>Execute NUMERIC</td>
<td>Same as left</td>
<td>n</td>
</tr>
<tr>
<td>o</td>
<td>OTHERS menu</td>
<td>Same as left</td>
<td>o</td>
</tr>
<tr>
<td>p</td>
<td>Execute PRINT</td>
<td>PRINT menu</td>
<td>p</td>
</tr>
<tr>
<td>q</td>
<td>FORM menu</td>
<td>LOWER FORM menu</td>
<td>q</td>
</tr>
<tr>
<td>r</td>
<td>Execute RESET</td>
<td>Same as left</td>
<td>r</td>
</tr>
<tr>
<td>s</td>
<td>SHIFT ON</td>
<td>SHIFT OFF</td>
<td>s</td>
</tr>
<tr>
<td>t</td>
<td>ITEM menu</td>
<td>LOWER ITEM menu</td>
<td>t</td>
</tr>
<tr>
<td>u</td>
<td>UPDATE RATE menu</td>
<td>Same as left</td>
<td>u</td>
</tr>
<tr>
<td>v</td>
<td>WIRING menu</td>
<td>Execute INPUT INFO.</td>
<td>v</td>
</tr>
<tr>
<td>w</td>
<td>Execute WAVE</td>
<td>Same as left</td>
<td>w</td>
</tr>
<tr>
<td>x</td>
<td>Execute EXT-SENSOR</td>
<td>SENSOR RATIO menu</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>SYNC SOURCE menu</td>
<td>Execute NULL</td>
<td>y</td>
</tr>
<tr>
<td>z</td>
<td>Execute SINGLE</td>
<td>Execute CAL</td>
<td>z</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>!</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>&</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>^</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>(</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enter</td>
<td>Set</td>
<td>Same as left</td>
<td>Ent</td>
</tr>
<tr>
<td>Esc</td>
<td>Esc</td>
<td>Same as left</td>
<td>Esc</td>
</tr>
<tr>
<td>BS</td>
<td>BS</td>
<td>Same as left</td>
<td>BS</td>
</tr>
<tr>
<td>Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td>Space</td>
<td>Same as left</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>^</td>
<td>^</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>@</td>
<td>@</td>
<td>`</td>
<td></td>
</tr>
<tr>
<td>[</td>
<td>[</td>
<td>]</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>]</td>
<td>]</td>
<td>}</td>
<td></td>
</tr>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>MISC</td>
<td>Same as left</td>
<td>.</td>
<td>></td>
</tr>
<tr>
<td>/</td>
<td>Execute HELP</td>
<td>/</td>
<td>?</td>
</tr>
<tr>
<td>Caps Lock</td>
<td></td>
<td>Caps Lock</td>
<td>Same as left</td>
</tr>
</tbody>
</table>
Appendix 9 Key Assignments of the USB Keyboard

<table>
<thead>
<tr>
<th>Key</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>U RANGE up</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F2</td>
<td>U RANGE down</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F3</td>
<td>Execute U MODE</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F4</td>
<td>Execute U AUTO</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F5</td>
<td>I RANGE up</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F6</td>
<td>I RANGE down</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F7</td>
<td>Execute I MODE</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F8</td>
<td>Execute I AUTO</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F9</td>
<td>Execute U, I, P</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F10</td>
<td>Execute S, Q, Λ, φ</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F11</td>
<td>Execute WP, α, TIME</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>F12</td>
<td>Execute FU, FI, Λ</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>Prnt Screen</td>
<td>Execute PRINT</td>
<td>PRINT menu</td>
<td></td>
</tr>
<tr>
<td>scrl Lock</td>
<td>Execute IMAGE SAVE</td>
<td>IMAGE SAVE menu</td>
<td></td>
</tr>
<tr>
<td>Pause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td></td>
<td>Insert ON</td>
<td>Same as left</td>
</tr>
<tr>
<td>Home</td>
<td>Execute USER</td>
<td>USER SET menu</td>
<td></td>
</tr>
<tr>
<td>PgUp</td>
<td>Execute PAGE PREVIOUS</td>
<td>Execute PAGE FIRST</td>
<td>Execute PAGE PREVIOUS</td>
</tr>
<tr>
<td>PgDn</td>
<td>Execute PAGE NEXT</td>
<td>Execute PAGE LAST</td>
<td>Execute PAGE NEXT</td>
</tr>
<tr>
<td>←</td>
<td>Cursor to the right</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>→</td>
<td>Cursor to the left</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>↓</td>
<td>Cursor down</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>↑</td>
<td>Cursor up</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric Keypad</th>
<th>Ctrl Key Held Down on the USB Keyboard</th>
<th>Soft Keyboard Displayed on the WT3000</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num Lock</td>
<td>Shift ON on the WT3000</td>
<td>+Shift on the USB Keyboard</td>
<td>+Shift on the USB Keyboard</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>+</td>
<td>*</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>Enter</td>
<td>Enter</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Same as left</td>
<td>Same as left</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Move soft keyboard</td>
<td>Cursor down</td>
</tr>
<tr>
<td>3</td>
<td>Execute PAGE NEXT</td>
<td>Execute PAGE LAST</td>
<td>Execute PAGE NEXT</td>
</tr>
<tr>
<td>4</td>
<td>Cursor to the left</td>
<td>Same as left</td>
<td>Cursor to the left</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Cursor to the right</td>
<td>Cursor to the right</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Cursor to the right</td>
<td>Cursor to the right</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Cursor up</td>
<td>Cursor up</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Move soft keyboard</td>
<td>Cursor up</td>
</tr>
<tr>
<td>9</td>
<td>Execute PAGE PREVIOUS</td>
<td>Execute PAGE FIRST</td>
<td>Execute PAGE PREVIOUS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Insert ON</td>
<td>Delete</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Delete</td>
<td>Delete</td>
</tr>
</tbody>
</table>
Appendix 10 Measurement Modes and Functional Limitations

The following measurement modes can be used on models with the advanced computation (/G6), voltage fluctuation and flicker measurement (/FL), or cycle-by-cycle measurement (/CC) option. The functions that can be used in each measurement mode are as follows:

<table>
<thead>
<tr>
<th>Measurement Mode</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
<th>Voltage Fluctuation and Flicker</th>
<th>Cycle by Cycle</th>
</tr>
</thead>
</table>

Display

- **Numeric**
 - Yes
 - Yes
 - Yes\(^1\)
 - Yes\(^1\)
 - Yes
 - Yes
 - No
 - No
- **Waveform**
 - Yes
 - Yes
 - No
 - No
 - No
 - No
- **Trend**
 - Yes
 - Yes
 - No
 - No
 - No
 - No
- **Bar graph**
 - No
 - Yes
 - Yes
 - No\(^2\)
 - No
 - No
 - No
- **Vector**
 - No
 - Yes
 - No
 - No
 - No
 - No
- **Waveform computation**
 - No
 - No
 - No
 - Yes
 - No
 - No
- **FFT**
 - No
 - No
 - No
 - Yes
 - No
 - No
- **Flicker**
 - No
 - No
 - No
 - No
 - Yes
 - No
- **Cycle by Cycle**
 - No
 - No
 - No
 - No
 - No
 - Yes

Auto range

- Yes
 - Yes
 - Yes
 - No
 - Yes
 - Yes
 - No
 - No

Averaging

- Exponential average
 - Yes
 - Yes
 - Yes
 - Yes
 - Limit\(^3\)
 - Yes
 - Yes
 - No
 - No
- Moving average
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No
 - No

Data update rate

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No
 - No
 - No

Voltage/Current mode

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - Yes
 - No

Peak measurement

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

User-defined function

- Yes
 - Yes
 - Yes
 - No
 - Yes
 - No
 - No
 - No

MAX hold

- Yes
 - Yes
 - Yes
 - No
 - Yes
 - Yes
 - No
 - No

Efficiency computation

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Compensation

- Yes
 - Yes
 - Limit\(^3\)
 - Limit\(^3\)
 - Yes
 - Yes
 - No
 - No

Integration

- Yes
 - Yes
 - No
 - No
 - No
 - No
 - No
 - No

Store

- Yes
 - Yes
 - Limit\(^3\)
 - No
 - No
 - No
 - No

File save

- Setup
 - Yes
 - Yes
- Numeric\(^8\)
 - Yes
 - Yes
- Wave
 - Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Acquisition

- No
 - No
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Zero-level compensation

- Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - Limit\(^3\)
 - Limit\(^3\)
 - Limit\(^3\)

NULL

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Synchronized measurement

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Motor\(^9\)

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - Yes

Print\(^11\)

- Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - Limit\(^3\)
 - Limit\(^3\)

Auto

- Yes
 - Yes
 - Limit\(^3\)
 - No
 - Limit\(^3\)
 - Limit\(^3\)
 - No
 - No

D/A output\(^14\)

- Yes
 - Yes
 - Yes
 - Yes
 - No
 - Yes
 - No

Delta computation\(^15\)

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Mail transmission\(^16\)

- Yes
 - Yes
 - No
 - No
 - Yes
 - Yes
 - No
 - No

Limitations

- **Yes**: Can be used.
- **Limit**: Limitation on some functions.
- **No**: Cannot be used.

- \(^1\) The rms values of voltage and current are total values, not the normal measurement values.
- \(^2\) 2 s.
- \(^3\) The attenuation constant cannot be selected.
- \(^4\) Fixed to 2 s.
- \(^5\) The efficiency compensation and the compensation for the two-wattmeter method are invalid.
- \(^6\) “Integ Sync” cannot be selected, because there is no integration function. Waveform data is set to NAN (no data) if Wave Trace is selected, because there is no waveform data.
- \(^7\) “Save FFT waveforms using “Acquisition,” not “Wave.”
- \(^8\) “Wave”
- \(^9\) The settings can be changed, and the function can be executed only when the measurement status is reset.
- \(^10\) Requires the motor version (-MV).
- \(^11\) Requires the built-in printer option. If an item that is not measured or computed in the respective measurement mode, NAN data is printed.
- \(^12\) Only the screen image can be printed. The list cannot be printed.
- \(^13\) Integration synchronization (Synchronize) cannot be set. It is fixed to timer.
- \(^14\) Requires the D/A output option.
- \(^15\) Requires the delta computation option.
- \(^16\) Requires the Ethernet communication option.
Appendix 11 Measurement Functions That Can Be Measured in Each Measurement Mode

The measurement functions that can be measured in each measurement mode that is selectable on models with the advanced computation (/G6) option are as follows:

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>U(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>I</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Q</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Q(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>λ</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>λ(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>φ</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>φ(k)</td>
<td>Yes*2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harmonic phase angle</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>jU(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>jI(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency*3</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreqU</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FreqI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rs(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Xs(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rp(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Xp(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pc</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhdf(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ihdf(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Phd(k)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Uthd</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>lthd</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pthd</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Uthf</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>lthf</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ulf</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>llf</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Uhf</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>lhf</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harmonics</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+pk</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>U-pk</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I+pk</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I-pk</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CRU</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CF</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak*4</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wp</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Wp+</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Wp-</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>q</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>q+</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>q-</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>I-Time</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>WS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>WQ</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: *1 Measurement Item
*2 Indicates that measurements are possible only when the Advanced Computation function is selected.
*3 Frequency
*4 Peak
*5 Integration

(Table 1/2)
Measurement Functions That Can Be Measured in Each Measurement Mode

<table>
<thead>
<tr>
<th>Measurement Item**</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>η2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>η3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>η4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ΔF1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ΔF2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ΔF3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ΔF4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase angle of the fundamental component between phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φUi-Uj</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>φUi-Uk</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>φUi-Ui</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>φUi-Ij</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>φUi-Ik</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Motor**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Torque</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SyncSp</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Slip</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pm</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User-defined function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F4</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F5</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F6</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F7</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F8</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F9</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F10</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F11</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F12</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F13</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F14</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F15</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F16</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F17</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F18</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F19</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F20</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**1 Variable k is the harmonic order and total value. The maximum order for which the harmonic data is measured is the maximum harmonic order to be measured that is specified in the harmonic measurement (option) menu. The data is set to [-------] (no data) for harmonic orders without data.

**2 The total value is not measured in normal measurement mode.

**3 The measured data for the frequencies of input signals that are not specified for the frequency measurement are set to [-------] (no data).

**4 If the voltage or current mode is not RMS, the data of CIU or CTI is set to [-------] (no data).

**5 If there are no integrated values because integration is not performed, the data is set to [-------] (no data). The data is set to [-------] (no data) also for integration time.

**6 The delta computation option (/DT) is required.

**7 The motor version (-MV) is required.

**8 The advanced computation option (/G6) or the harmonic measurement option (/G5) is required to measure the items related to harmonics and impedance.

Only the specialized measurement functions can be measured in voltage fluctuation and flicker measurement and cycle-by-cycle measurement modes. For the measurement functions that can be measured, see sections 12.1 and 13.1 in the *Expansion Function User's Manual IM760301-51E*.

*Yes: Can be measured.

No: Cannot be measured.*
Appendix 12 Operands of User-Defined Functions That Can Be Used in Each Measurement Mode

The operands of user-defined functions that can be used in each measurement mode that is selectable on models with the advanced computation (/G6) option are as follows:

The user-defined function cannot be used in voltage fluctuation and flicker measurement and cycle-by-cycle measurement modes.

<table>
<thead>
<tr>
<th>Measurement Item(^1)</th>
<th>Measurement Mode</th>
<th>Normal Measurement(^2)</th>
<th>Wide Bandwidth Harmonic(^3)</th>
<th>IEC Harmonic</th>
<th>Waveform Computation(^1)</th>
<th>FFT(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All rms values and each harmonic component</td>
<td>U(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td></td>
<td>URM()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UMN()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>V(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td></td>
<td>P(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
</tr>
<tr>
<td></td>
<td>S(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td></td>
<td>Q(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Limit</td>
</tr>
<tr>
<td></td>
<td>LAMBD()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Limit</td>
</tr>
<tr>
<td></td>
<td>PH(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Limit</td>
</tr>
<tr>
<td>Frequency(^4)</td>
<td>FU()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>FI()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Peak(^5)</td>
<td>UPPK()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UMPK()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IPPK()</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IMPK()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CFU()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CFI()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pc</td>
<td>PC()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficiency</td>
<td>ETA1()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ETA2()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ETA3()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ETA4()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Integration(^6)</td>
<td>WH()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WHIP()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WHIP()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>AN()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>AHI()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>AHM()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WS()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WQ()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>TI()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Motor(^7)</td>
<td>SPEED()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TORQUE()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PM()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SLIP()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYNC()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Delta computation(^8)</td>
<td>DELTA1()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DELTA2()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DELTA3()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DELTA4()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Harmonic phase angle</td>
<td>UPHI(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IPHI(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Z(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Impedance</td>
<td>RS(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>XS(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>RP(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>XP(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^1\) Measurement item
\(^2\) Normal measurement
\(^3\) Wide bandwidth harmonic
\(^4\) Frequency
\(^5\) Peak
\(^6\) Integration
\(^7\) Motor
\(^8\) Delta computation
Appendix 12 Operands of User-Defined Functions That Can Be Used in Each Measurement Mode

Measurement Item

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHDF(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IHDF(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PHDF(,)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UTHD()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ITHD()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PTHD()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UTHF()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ITHF()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UTF()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ITF()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HVF()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HCF()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Phase angle of the fundamental component between phases

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIUIU2()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PHIUIU3()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PHIUI11()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PHIUI12()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PHIUI13()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

User-defined function

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F2()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F3()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F4()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F5()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F6()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F7()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F8()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F9()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F10()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F11()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F12()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F13()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F14()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F15()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F16()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F17()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F18()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
<tr>
<td>F19()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Limit</td>
<td>Limit</td>
</tr>
</tbody>
</table>

MAX hold

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Normal Measurement</th>
<th>Wide Bandwidth Harmonic</th>
<th>IEC Harmonic</th>
<th>Waveform Computation</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMAX()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>URMSMAX()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UMEANMAX()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IMAX()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PMAX()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SMAX()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OMAX()</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UPEAKMAX()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UMPPEAKMAX()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPPEAKMAX()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IMPPEAKMAX()</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*1 The maximum order for which the harmonic data is measured is the maximum harmonic order to be measured that is specified in the harmonic measurement (option) menu. The data is set to NAN (no data) for harmonic orders without data.

*2 If the harmonic order section of the equation is set to ORT, the normal measurement value (the value that includes all frequency components) is substituted.

*3 If the harmonic order section of the equation is set to ORT, the total value (the total value of each harmonic component) is substituted.

*4 The measured data for the frequencies of input signals that are not specified for the frequency measurement are set to NAN (no data).

*5 If the voltage or current mode is not RMS, the data of CFU or CFI is set to NAN (no data).

*6 If there are no integrated values because integration is not performed, the data is set to NAN (no data).

*7 The data is set to NAN (no data) also for integration time.

*8 The delta computation option (/DT) is required.

*9 The advanced computation option (/G6) or the harmonic measurement option (/G5) is required to measure the items related to harmonics and impedance.

*10 For other items that do not have numeric data, the data is set to NAN (no data).

*11 Can be used on WT3000s with firmware version 3.01 or later. For details, see section 5.4.
Appendix 13 Parameters in the Operands of User-Defined Functions

The parameters that can be specified in the operands of user-defined functions are as follows:

<table>
<thead>
<tr>
<th>Measurement Function</th>
<th>User-Defined Function</th>
<th>Left Parameter in (,) or Parameter in ()</th>
<th>Right Parameter in (,)</th>
<th>Element</th>
<th>Wiring Unit</th>
<th>Order</th>
<th>Normal Value or Total Value</th>
<th>DC</th>
<th>Fundamental Wave</th>
<th>Harmonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U(,)</td>
<td>U(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Urms</td>
<td>URMS()</td>
<td>URMS(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umn</td>
<td>UMN()</td>
<td>UMN(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>I(,)</td>
<td>I(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P</td>
<td>P(,)</td>
<td>P(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>S(,)</td>
<td>S(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Q</td>
<td>Q(,)</td>
<td>Q(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>LAMBDA(,)</td>
<td>LAMBDA(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\phi)</td>
<td>PH(,)</td>
<td>PH(E1,OR3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>fU</td>
<td>FU()</td>
<td>FU(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fI</td>
<td>FI()</td>
<td>FI(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U+pk</td>
<td>UPPK()</td>
<td>UPPK(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-pk</td>
<td>UMPK()</td>
<td>UMPK(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+pk</td>
<td>IPPK()</td>
<td>IPPK(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-pk</td>
<td>IMPK()</td>
<td>IMPK(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P+pk*4</td>
<td>PPK()*4</td>
<td>PPK(E1)*4</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-pk*4</td>
<td>PMPK()*4</td>
<td>PMPK(E1)*4</td>
<td>Yes*4</td>
<td>No*4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFU</td>
<td>CFU()</td>
<td>CFU(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFl</td>
<td>CFl()</td>
<td>CFl(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc</td>
<td>PC()</td>
<td>PC(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma 1)</td>
<td>ETA1()</td>
<td>ETA1()</td>
<td>None or space*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma 2)</td>
<td>ETA2()</td>
<td>ETA2()</td>
<td>None or space*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma 3)</td>
<td>ETA3()</td>
<td>ETA3()</td>
<td>None or space*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma 4)</td>
<td>ETA4()</td>
<td>ETA4()</td>
<td>None or space*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wp</td>
<td>WH()</td>
<td>WH(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wp+</td>
<td>WHP()</td>
<td>WHP(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wp-</td>
<td>WHM()</td>
<td>WHM(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>AH()</td>
<td>AH(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q*</td>
<td>AHP()</td>
<td>AHP(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q-</td>
<td>AHM()</td>
<td>AHM(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>SH()</td>
<td>SH(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQ</td>
<td>QH()</td>
<td>QH(E1)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>TI()</td>
<td>TI(E1)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The following measurement functions can also be specified on models with the motor evaluation function (motor version).

<table>
<thead>
<tr>
<th>Speed</th>
<th>SPEED()</th>
<th>SPEED()</th>
<th>None or space*2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
<td>TORQUE()</td>
<td>TORQUE()</td>
<td>None or space*2</td>
</tr>
<tr>
<td>Pm</td>
<td>PM()</td>
<td>PM()</td>
<td>None or space*2</td>
</tr>
<tr>
<td>Slip</td>
<td>SLIP()</td>
<td>SLIP()</td>
<td>None or space*2</td>
</tr>
<tr>
<td>SyncSp</td>
<td>SYNC()</td>
<td>SYNC()</td>
<td>None or space*2</td>
</tr>
</tbody>
</table>
Appendix 13 Parameters in the Operands of User-Defined Functions

- The following measurement functions can also be specified on models with delta computation (option).

<table>
<thead>
<tr>
<th>Measurement Function</th>
<th>User-Defined Function</th>
<th>Left Parameter in (,) or Parameter in ()</th>
<th>Right Parameter in (,)</th>
<th>Element</th>
<th>Wiring Unit</th>
<th>Normal Value or Total Value</th>
<th>DC(^2)</th>
<th>Fundamental Wave(^*)</th>
<th>Harmonics(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta F1)</td>
<td>DELTA1()</td>
<td>DELTA1()</td>
<td>None or space(^*)</td>
<td>E1 to E4</td>
<td>E5 or E6</td>
<td>ORT</td>
<td>OR0</td>
<td>OR1</td>
<td>OR2 to OR100</td>
</tr>
<tr>
<td>(\Delta F2)</td>
<td>DELTA2()</td>
<td>DELTA2()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F3)</td>
<td>DELTA3()</td>
<td>DELTA3()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F4)</td>
<td>DELTA4()</td>
<td>DELTA4()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F1rms())</td>
<td>DELTAF1RMS()</td>
<td>DELTAF1RMS()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F2rms())</td>
<td>DELTAF2RMS()</td>
<td>DELTAF2RMS()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F3rms())</td>
<td>DELTAF3RMS()</td>
<td>DELTAF3RMS()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F4rms())</td>
<td>DELTAF4RMS()</td>
<td>DELTAF4RMS()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F1mn())</td>
<td>DELTAF1MN()</td>
<td>DELTAF1MN()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F2mn())</td>
<td>DELTAF2MN()</td>
<td>DELTAF2MN()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F3mn())</td>
<td>DELTAF3MN()</td>
<td>DELTAF3MN()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F4mn())</td>
<td>DELTAF4MN()</td>
<td>DELTAF4MN()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F1dc())</td>
<td>DELTAF1DC()</td>
<td>DELTAF1DC()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F2dc())</td>
<td>DELTAF2DC()</td>
<td>DELTAF2DC()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F3dc())</td>
<td>DELTAF3DC()</td>
<td>DELTAF3DC()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta F4dc())</td>
<td>DELTAF4DC()</td>
<td>DELTAF4DC()</td>
<td>None or space(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The measurement functions below can be computed on models with the advanced computation or harmonic measurement option.

\(iU\)	UPHI()	UPHI(E1,OR3)	Yes	No	No	No	Yes
\(iI\)	IPHI()	IPHI(E1,OR3)	Yes	No	No	No	Yes
\(Z\)	Z()	Z(E1,OR3)	Yes	No	No	No	Yes
\(Rs\)	RS()	RS(E1,OR3)	Yes	No	No	No	Yes
\(Xs\)	XS()	XS(E1,OR3)	Yes	No	No	No	Yes
\(Rp\)	RP()	RP(E1,OR3)	Yes	No	No	No	Yes
\(Xp\)	XP()	XP(E1,OR3)	Yes	No	No	No	Yes
\(Uthdf\)	UHDF()	UHDF(E1,OR3)	Yes	No	No	No	Yes
\(Ithdf\)	IHDF()	IHDF(E1,OR3)	Yes	No	No	No	Yes
\(Phdf\)	PHDF()	PHDF(E1,OR3)	Yes	No	No	No	Yes
\(Uthd\)	UTHD()	UTHD(E1)	Yes	No			
\(Ithd\)	ITHD()	ITHD(E1)	Yes	No			
\(Pthd\)	PTHD()	PTHD(E1)	Yes	No			
\(Uthf\)	UTHF()	UTHF(E1)	Yes	No			
\(Ithf\)	ITHF()	ITHF(E1)	Yes	No			
\(Uthf\)	UTHF()	UTHF(E1)	Yes	No			
\(Ithf\)	ITHF()	ITHF(E1)	Yes	No			
\(Uthf\)	UTHF()	UTHF(E1)	Yes	No			
\(Ithf\)	ITHF()	ITHF(E1)	Yes	No			
\(hvf\)	HVF()	HVF(E1)	Yes	No			
\(hcf\)	HCF()	HCF(E1)	Yes	No			
\(iU1-U2\)	PHIU1U2()	PHIU1U2(E5)	No	Yes			
\(iU1-U3\)	PHIU1U3()	PHIU1U3(E5)	No	Yes			
\(iU1-I1\)	PHIU1I1()	PHIU1I1(E5)	No	Yes			
\(iU1-I2\)	PHIU1I2()	PHIU1I2(E5)	No	Yes			
\(iU1-I3\)	PHIU1I3()	PHIU1I3(E5)	No	Yes			
Appendix 13 Parameters in the Operands of User-Defined Functions

User-Defined Function

<table>
<thead>
<tr>
<th>Measurement Function</th>
<th>User-Defined Function</th>
<th>Left Parameter in () or Parameter in ()</th>
<th>Right Parameter in ()</th>
<th>Element</th>
<th>Wiring Unit</th>
<th>Order</th>
<th>Normal Value or Total Value*1</th>
<th>DC*2</th>
<th>Fundamental wave*3</th>
<th>Harmonics*4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Example E1 to E4 E5 or E6</td>
<td></td>
<td>ORT</td>
<td>OR0</td>
<td>OR1</td>
<td>OR2 to OR100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>F1()</td>
<td>F1()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>F2()</td>
<td>F2()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>F3()</td>
<td>F3()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>F4()</td>
<td>F4()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>F5()</td>
<td>F5()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>F6()</td>
<td>F6()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>F7()</td>
<td>F7()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>F8()</td>
<td>F8()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>F9()</td>
<td>F9()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>F10()</td>
<td>F10()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>F11()</td>
<td>F11()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F12</td>
<td>F12()</td>
<td>F12()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F13</td>
<td>F13()</td>
<td>F13()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F14</td>
<td>F14()</td>
<td>F14()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15</td>
<td>F15()</td>
<td>F15()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F16</td>
<td>F16()</td>
<td>F16()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F17</td>
<td>F17()</td>
<td>F17()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F18</td>
<td>F18()</td>
<td>F18()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F19</td>
<td>F19()</td>
<td>F19()</td>
<td>None or space*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAX hold

<table>
<thead>
<tr>
<th>Voltage</th>
<th>UMAX()</th>
<th>UMAX(E1)</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rms voltage</td>
<td>URMMSMAX()</td>
<td>URMMSMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Voltage mean</td>
<td>UMEANMAX()</td>
<td>UMEANMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Current</td>
<td>IMAX()</td>
<td>IMAX(E1)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Active power</td>
<td>PMAX()</td>
<td>PMAX(E1)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Apparent power</td>
<td>SMAX()</td>
<td>SMAX(E1)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reactive power</td>
<td>QMAX()</td>
<td>QMAX(E1)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Positive peak voltage</td>
<td>UPPEAKMAX()</td>
<td>UPPEAKMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Negative peak voltage</td>
<td>UPMEAKMAX()</td>
<td>UPMEAKMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Positive peak current</td>
<td>IPPEAKMAX()</td>
<td>IPPEAKMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Negative peak current</td>
<td>IMPEAKMAX()</td>
<td>IMPEAKMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Positive peak power</td>
<td>PPPEAKMAX()</td>
<td>PPPEAKMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Negative peak power</td>
<td>PPMEAKMAX()</td>
<td>PPMEAKMAX(E1)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

*1 If ORT is specified for the parameter, a normal value or total value (requires /G6) is substituted depending on the measurement mode.

*2 Requires /G5 or /G6.

*3 The parentheses cannot be omitted.

*4 Can be used on WT3000s with firmware version 5.01 or later.

*5 Can be used on WT3000s with firmware version 4.07 or later.
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>5-6</td>
</tr>
<tr>
<td>η Formula</td>
<td>5-20</td>
</tr>
<tr>
<td>λ</td>
<td>5-6</td>
</tr>
<tr>
<td>Σ functions (of normal measurement)</td>
<td>2-6</td>
</tr>
<tr>
<td>(I) Position</td>
<td>6-13</td>
</tr>
<tr>
<td>(I) V Zoom</td>
<td>6-13</td>
</tr>
<tr>
<td>(U) Position</td>
<td>6-13</td>
</tr>
<tr>
<td>(U) V Zoom</td>
<td>6-13</td>
</tr>
<tr>
<td>180 Lead/Lag</td>
<td>5-28</td>
</tr>
<tr>
<td>360 degrees</td>
<td>5-28</td>
</tr>
<tr>
<td>3P3W(3V3A) & A Compensation</td>
<td>5-23</td>
</tr>
<tr>
<td>758931</td>
<td>3-10</td>
</tr>
<tr>
<td>A Page</td>
<td></td>
</tr>
<tr>
<td>Abort</td>
<td>8-16, 9-11, 9-25</td>
</tr>
<tr>
<td>AC power</td>
<td>App-19</td>
</tr>
<tr>
<td>accessories, optional</td>
<td>v</td>
</tr>
<tr>
<td>accessories, standard</td>
<td>v</td>
</tr>
<tr>
<td>accuracy</td>
<td>12-5</td>
</tr>
<tr>
<td>active power</td>
<td>5-6, App-20</td>
</tr>
<tr>
<td>adapter</td>
<td>3-10</td>
</tr>
<tr>
<td>aliasing</td>
<td>2-26</td>
</tr>
<tr>
<td>All Items</td>
<td>5-2</td>
</tr>
<tr>
<td>All Reset</td>
<td>9-31, 9-34</td>
</tr>
<tr>
<td>All Set</td>
<td>9-31, 9-34</td>
</tr>
<tr>
<td>alternating current, vector display</td>
<td>App-17</td>
</tr>
<tr>
<td>ambient humidity</td>
<td>3-2</td>
</tr>
<tr>
<td>ambient temperature</td>
<td>3-2</td>
</tr>
<tr>
<td>angular velocity</td>
<td>App-16</td>
</tr>
<tr>
<td>apparent power, equation</td>
<td>5-6, App-20</td>
</tr>
<tr>
<td>apparent power</td>
<td>5-25</td>
</tr>
<tr>
<td>ASCII</td>
<td>8-15, 8-18, 9-13, 9-14</td>
</tr>
<tr>
<td>ASSP</td>
<td>App-33</td>
</tr>
<tr>
<td>attenuation constant</td>
<td>4-24</td>
</tr>
<tr>
<td>Attribute</td>
<td>9-28</td>
</tr>
<tr>
<td>Auto Cal</td>
<td>5-45</td>
</tr>
<tr>
<td>auto calibration</td>
<td>5-45</td>
</tr>
<tr>
<td>Auto Naming</td>
<td>9-10</td>
</tr>
<tr>
<td>auto naming function</td>
<td>8-19, 9-19, 9-23</td>
</tr>
<tr>
<td>auto range</td>
<td>2-10, 4-8</td>
</tr>
<tr>
<td>auto scaling</td>
<td>7-11</td>
</tr>
<tr>
<td>average active power</td>
<td>5-19</td>
</tr>
<tr>
<td>average count</td>
<td>4-24</td>
</tr>
<tr>
<td>Average for the Synchronous Source Period</td>
<td>App-33</td>
</tr>
<tr>
<td>averaging</td>
<td>2-13, 4-24</td>
</tr>
<tr>
<td>averaging type, selection of</td>
<td>4-24</td>
</tr>
<tr>
<td>AVG</td>
<td>4-24</td>
</tr>
<tr>
<td>Avg Type</td>
<td>4-24</td>
</tr>
<tr>
<td>B Page</td>
<td></td>
</tr>
<tr>
<td>bar graph</td>
<td>2-32</td>
</tr>
<tr>
<td>Binary</td>
<td>9-7, 9-13</td>
</tr>
<tr>
<td>block diagram</td>
<td>2-2</td>
</tr>
<tr>
<td>BMP</td>
<td>9-23</td>
</tr>
<tr>
<td>built-in printer</td>
<td>2-36</td>
</tr>
<tr>
<td>C Page</td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td>10-1</td>
</tr>
<tr>
<td>capacity</td>
<td>App-22</td>
</tr>
<tr>
<td>CI</td>
<td>5-6</td>
</tr>
<tr>
<td>CIU</td>
<td>5-6</td>
</tr>
<tr>
<td>character strings, entry of</td>
<td>3-28</td>
</tr>
<tr>
<td>Clear Trend Exec</td>
<td>7-16</td>
</tr>
<tr>
<td>clearing the internal memory</td>
<td>8-12</td>
</tr>
<tr>
<td>color</td>
<td>9-20, 9-23</td>
</tr>
<tr>
<td>comment</td>
<td>8-15, 9-10, 9-19, 9-21</td>
</tr>
<tr>
<td>Config</td>
<td>10-5, 10-7, 10-11</td>
</tr>
<tr>
<td>Continuous</td>
<td>5-41</td>
</tr>
<tr>
<td>continuous integration</td>
<td>5-40, 5-44</td>
</tr>
<tr>
<td>Copy</td>
<td>9-33</td>
</tr>
<tr>
<td>copy destination</td>
<td>9-35</td>
</tr>
<tr>
<td>Copy Exec</td>
<td>9-35</td>
</tr>
<tr>
<td>copy source</td>
<td>9-33</td>
</tr>
<tr>
<td>corrected power</td>
<td>2-19, 5-6</td>
</tr>
<tr>
<td>corrected power, equation for</td>
<td>5-26</td>
</tr>
<tr>
<td>crest factor</td>
<td>2-11, 4-18, 5-6, App-17</td>
</tr>
<tr>
<td>CT ratio</td>
<td>4-16</td>
</tr>
<tr>
<td>current</td>
<td>5-6</td>
</tr>
<tr>
<td>current hour</td>
<td>5-6</td>
</tr>
<tr>
<td>current input terminal</td>
<td>3-14</td>
</tr>
<tr>
<td>current mode</td>
<td>5-9</td>
</tr>
<tr>
<td>current range, setting of</td>
<td>4-6</td>
</tr>
<tr>
<td>CURSOR</td>
<td>6-23, 7-17</td>
</tr>
<tr>
<td>cursor measurement</td>
<td>6-23</td>
</tr>
<tr>
<td>Cursor Path</td>
<td>6-24</td>
</tr>
<tr>
<td>cycle-by-cycle measurement</td>
<td>3-14</td>
</tr>
<tr>
<td>cycle-by-cycle measurement mode</td>
<td>3-34</td>
</tr>
<tr>
<td>D Page</td>
<td></td>
</tr>
<tr>
<td>D/A output</td>
<td>2-37</td>
</tr>
<tr>
<td>data compression</td>
<td>9-23</td>
</tr>
<tr>
<td>data format</td>
<td>9-23</td>
</tr>
<tr>
<td>data size</td>
<td>8-18, 9-12, 9-14</td>
</tr>
<tr>
<td>data type</td>
<td>8-15, 8-18, 9-7, 9-8, 9-13, 9-14</td>
</tr>
<tr>
<td>data update rate</td>
<td>4-27</td>
</tr>
<tr>
<td>Date/Time</td>
<td>3-24</td>
</tr>
<tr>
<td>DC</td>
<td>5-9</td>
</tr>
<tr>
<td>dc</td>
<td>App-1</td>
</tr>
<tr>
<td>Delete</td>
<td>9-30</td>
</tr>
<tr>
<td>Delete Exec</td>
<td>9-32</td>
</tr>
<tr>
<td>delta computation</td>
<td>2-6, 2-20</td>
</tr>
<tr>
<td>directories</td>
<td>9-37</td>
</tr>
<tr>
<td>directories, creation of</td>
<td>9-37</td>
</tr>
<tr>
<td>directory</td>
<td>8-15</td>
</tr>
<tr>
<td>display color</td>
<td>2-38, 10-8</td>
</tr>
<tr>
<td>display interpolation</td>
<td>6-18</td>
</tr>
<tr>
<td>display resolution</td>
<td>2-15</td>
</tr>
<tr>
<td>displayed items, number of</td>
<td>5-2, 5-7</td>
</tr>
<tr>
<td>displayed items, resetting the order of</td>
<td>5-6</td>
</tr>
<tr>
<td>distorted wave</td>
<td>2-20</td>
</tr>
<tr>
<td>distortion factor</td>
<td>2-20</td>
</tr>
<tr>
<td>Dual</td>
<td>6-17, 7-13</td>
</tr>
<tr>
<td>Dual List</td>
<td>5-7</td>
</tr>
<tr>
<td>E</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>EAMP</td>
<td>App-33</td>
</tr>
<tr>
<td>efficiency</td>
<td>5-20</td>
</tr>
<tr>
<td>Efficiency Compensation</td>
<td>5-23</td>
</tr>
<tr>
<td>efficiency, equation for</td>
<td>5-20</td>
</tr>
<tr>
<td>Element Independent</td>
<td>4-4</td>
</tr>
<tr>
<td>elements, independent setting of</td>
<td>4-4</td>
</tr>
<tr>
<td>error messages</td>
<td>11-2</td>
</tr>
<tr>
<td>Ethernet</td>
<td>2-36</td>
</tr>
<tr>
<td>expendable items</td>
<td>11-11</td>
</tr>
<tr>
<td>Exponential Average for Measuring Period</td>
<td>App-33</td>
</tr>
<tr>
<td>Ext Clk</td>
<td>4-20</td>
</tr>
<tr>
<td>EXT SENSOR</td>
<td>4-12</td>
</tr>
<tr>
<td>extension</td>
<td>8-18, 9-12, 9-14</td>
</tr>
<tr>
<td>external current sensor range</td>
<td>4-12</td>
</tr>
<tr>
<td>external current sensor transformation ratio</td>
<td>4-13</td>
</tr>
<tr>
<td>external dimensions</td>
<td>12-16, 12-18</td>
</tr>
<tr>
<td>external trigger signal</td>
<td>6-10</td>
</tr>
<tr>
<td>F</td>
<td>Page</td>
</tr>
<tr>
<td>falling zero crossing</td>
<td>App-27</td>
</tr>
<tr>
<td>FFT</td>
<td>2-33</td>
</tr>
<tr>
<td>II</td>
<td>5-6</td>
</tr>
<tr>
<td>FILE</td>
<td>9-3, 9-6, 9-27, 9-30, 9-33, 9-37</td>
</tr>
<tr>
<td>file attributes</td>
<td>9-27</td>
</tr>
<tr>
<td>file, deletion of</td>
<td>9-30</td>
</tr>
<tr>
<td>File Item</td>
<td>9-6</td>
</tr>
<tr>
<td>File List</td>
<td>8-15, 9-21</td>
</tr>
<tr>
<td>file name</td>
<td>8-15, 9-10, 9-19, 9-22, 9-23</td>
</tr>
<tr>
<td>file properties</td>
<td>9-27</td>
</tr>
<tr>
<td>file, specifying of</td>
<td>9-27</td>
</tr>
<tr>
<td>files, copying of</td>
<td>9-33</td>
</tr>
<tr>
<td>files, renaming of</td>
<td>9-37</td>
</tr>
<tr>
<td>Filter</td>
<td>8-16, 9-28</td>
</tr>
<tr>
<td>filter</td>
<td>2-12, 4-23</td>
</tr>
<tr>
<td>Float</td>
<td>8-15, 8-18, 9-7, 9-13, 9-14</td>
</tr>
<tr>
<td>Font</td>
<td>10-5</td>
</tr>
<tr>
<td>form factor</td>
<td>App-17</td>
</tr>
<tr>
<td>Format</td>
<td>9-4</td>
</tr>
<tr>
<td>format</td>
<td>9-3</td>
</tr>
<tr>
<td>Format Exec</td>
<td>9-4</td>
</tr>
<tr>
<td>FREQ FILTER</td>
<td>4-22</td>
</tr>
<tr>
<td>frequency</td>
<td>8-15, 9-28</td>
</tr>
<tr>
<td>frequency filter</td>
<td>4-23</td>
</tr>
<tr>
<td>Frequency Meas Item</td>
<td>5-10</td>
</tr>
<tr>
<td>frequency measurement</td>
<td>5-10</td>
</tr>
<tr>
<td>front panel</td>
<td>1-1</td>
</tr>
<tr>
<td>FTP client function</td>
<td>2-36</td>
</tr>
<tr>
<td>fU</td>
<td>5-6</td>
</tr>
<tr>
<td>Function</td>
<td>9-9</td>
</tr>
<tr>
<td>function selected keys</td>
<td>5-3</td>
</tr>
<tr>
<td>fundamental component</td>
<td>App-21</td>
</tr>
<tr>
<td>fundamental frequency</td>
<td>App-21</td>
</tr>
<tr>
<td>fundamental wave</td>
<td>App-21</td>
</tr>
<tr>
<td>fuse</td>
<td>v, 11-10, 12-16</td>
</tr>
<tr>
<td>fuse rating</td>
<td>11-10</td>
</tr>
<tr>
<td>G</td>
<td>Page</td>
</tr>
<tr>
<td>Gothic</td>
<td>10-5</td>
</tr>
<tr>
<td>GP-IB</td>
<td>2-37</td>
</tr>
<tr>
<td>Graph Color</td>
<td>10-8</td>
</tr>
<tr>
<td>graphic color</td>
<td>10-8, 10-10</td>
</tr>
<tr>
<td>gratulce</td>
<td>6-18, 6-19</td>
</tr>
<tr>
<td>H</td>
<td>Page</td>
</tr>
<tr>
<td>handling precautions</td>
<td>3-1</td>
</tr>
<tr>
<td>harmonic component</td>
<td>App-21</td>
</tr>
<tr>
<td>harmonic distortion factor</td>
<td>App-21</td>
</tr>
<tr>
<td>harmonic measurement</td>
<td>2-6</td>
</tr>
<tr>
<td>harmonic order</td>
<td>App-21</td>
</tr>
<tr>
<td>harmonics</td>
<td>App-21</td>
</tr>
<tr>
<td>HELP</td>
<td>10-13</td>
</tr>
<tr>
<td>higher harmonic</td>
<td>App-21</td>
</tr>
<tr>
<td>hold</td>
<td>2-14, 4-29</td>
</tr>
<tr>
<td>horizontal axis</td>
<td>2-24</td>
</tr>
<tr>
<td>I</td>
<td>Page</td>
</tr>
<tr>
<td>I</td>
<td>5-6</td>
</tr>
<tr>
<td>I-pk</td>
<td>5-6</td>
</tr>
<tr>
<td>IMAGE SAVE</td>
<td>9-20</td>
</tr>
<tr>
<td>inductance</td>
<td>App-22</td>
</tr>
<tr>
<td>initial settings</td>
<td>App-4</td>
</tr>
<tr>
<td>initialization</td>
<td>2-37, 3-26</td>
</tr>
<tr>
<td>Initialize Settings</td>
<td>3-26</td>
</tr>
<tr>
<td>inlet hole</td>
<td>3-2</td>
</tr>
<tr>
<td>input filter</td>
<td>4-22</td>
</tr>
<tr>
<td>INPUT INFO</td>
<td>3-39</td>
</tr>
<tr>
<td>input signal flow and process</td>
<td>2-2</td>
</tr>
<tr>
<td>input terminal, connecting to</td>
<td>3-14</td>
</tr>
<tr>
<td>installation condition</td>
<td>3-2</td>
</tr>
<tr>
<td>installation position</td>
<td>3-3</td>
</tr>
<tr>
<td>instantaneous value</td>
<td>App-16</td>
</tr>
<tr>
<td>instrument number</td>
<td>iii</td>
</tr>
<tr>
<td>Integ</td>
<td>5-35, 5-38, 5-41, 5-45</td>
</tr>
<tr>
<td>I-nat</td>
<td>5-35, 5-38, 5-41, 5-45</td>
</tr>
<tr>
<td>Integ Sync</td>
<td>8-1</td>
</tr>
<tr>
<td>integration auto calibration</td>
<td>5-45</td>
</tr>
<tr>
<td>integration hold</td>
<td>5-36</td>
</tr>
<tr>
<td>integration mode</td>
<td>2-21</td>
</tr>
<tr>
<td>integration reset</td>
<td>5-36</td>
</tr>
<tr>
<td>integration, starting of</td>
<td>5-36</td>
</tr>
<tr>
<td>integration stop</td>
<td>5-36</td>
</tr>
<tr>
<td>integration timer</td>
<td>5-36, 5-39, 5-42</td>
</tr>
<tr>
<td>internal memory, initialization of</td>
<td>8-13</td>
</tr>
<tr>
<td>Interpolate</td>
<td>6-19</td>
</tr>
<tr>
<td>Interval Setting</td>
<td>8-8</td>
</tr>
<tr>
<td>item to be saved</td>
<td>9-6</td>
</tr>
<tr>
<td>J</td>
<td>Page</td>
</tr>
<tr>
<td>JPEG</td>
<td>9-23</td>
</tr>
<tr>
<td>K</td>
<td>Page</td>
</tr>
<tr>
<td>Key Board</td>
<td>11-7</td>
</tr>
<tr>
<td>Key Lock</td>
<td>10-11</td>
</tr>
<tr>
<td>key test</td>
<td>11-8</td>
</tr>
<tr>
<td>keyboard test</td>
<td>11-8</td>
</tr>
<tr>
<td>L</td>
<td>Page</td>
</tr>
<tr>
<td>label</td>
<td>6-21</td>
</tr>
<tr>
<td>line filter</td>
<td>4-22, 4-23</td>
</tr>
<tr>
<td>List Item</td>
<td>8-4, 9-8</td>
</tr>
<tr>
<td>Load</td>
<td>9-25</td>
</tr>
<tr>
<td>Load Exec</td>
<td>9-25</td>
</tr>
<tr>
<td>Lower Scale</td>
<td>7-11</td>
</tr>
<tr>
<td>LPR client function</td>
<td>2-36</td>
</tr>
<tr>
<td>M</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Manual integration</td>
<td>8-1</td>
</tr>
<tr>
<td>manual integration mode</td>
<td>5-35</td>
</tr>
<tr>
<td>manual integration mode</td>
<td>5-30</td>
</tr>
<tr>
<td>manual scaling</td>
<td>7-11</td>
</tr>
<tr>
<td>master</td>
<td>10-14</td>
</tr>
<tr>
<td>master/slave synchronization measurement</td>
<td>10-14</td>
</tr>
<tr>
<td>master/slave synchronized measurement</td>
<td>2-38</td>
</tr>
<tr>
<td>Max</td>
<td>6-24</td>
</tr>
<tr>
<td>MAX hold</td>
<td>2-17, 5-17</td>
</tr>
<tr>
<td>maximum display</td>
<td>12-6</td>
</tr>
<tr>
<td>MEAN</td>
<td>5-9</td>
</tr>
<tr>
<td>MEASURE</td>
<td>1-7</td>
</tr>
<tr>
<td>measurement function symbols, meaning of</td>
<td>5-6</td>
</tr>
<tr>
<td>measurement functions, determination of</td>
<td>App-1</td>
</tr>
<tr>
<td>measurement method</td>
<td>12-9</td>
</tr>
<tr>
<td>measurement mode</td>
<td>2-3, 3-4</td>
</tr>
<tr>
<td>measurement period</td>
<td>4-19, App-26</td>
</tr>
<tr>
<td>measurement range</td>
<td>2-10, 4-6</td>
</tr>
<tr>
<td>media</td>
<td>9-4</td>
</tr>
<tr>
<td>Media Info</td>
<td>9-4</td>
</tr>
<tr>
<td>Memory</td>
<td>11-7</td>
</tr>
<tr>
<td>memory test</td>
<td>11-7</td>
</tr>
<tr>
<td>Memory to File Exec</td>
<td>8-16</td>
</tr>
<tr>
<td>message language</td>
<td>3-41</td>
</tr>
<tr>
<td>Mid</td>
<td>6-24</td>
</tr>
<tr>
<td>minimum display</td>
<td>12-6</td>
</tr>
<tr>
<td>MISC</td>
<td>1-9</td>
</tr>
<tr>
<td>mn</td>
<td>App-1</td>
</tr>
<tr>
<td>MODEL</td>
<td>ii</td>
</tr>
<tr>
<td>motor evaluation function</td>
<td>2-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal integration mode</td>
<td>5-30, 5-38</td>
</tr>
<tr>
<td>normal measurement value</td>
<td>2-6</td>
</tr>
<tr>
<td>Normal Mode (Trg)</td>
<td>6-2</td>
</tr>
<tr>
<td>NULL</td>
<td>10-2</td>
</tr>
<tr>
<td>NULL function</td>
<td>2-38, 10-2</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>5-1</td>
</tr>
<tr>
<td>numeric data, display order of</td>
<td>App-4</td>
</tr>
<tr>
<td>numeric data, saving of</td>
<td>9-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>5-7</td>
</tr>
<tr>
<td>OL</td>
<td>5-7</td>
</tr>
<tr>
<td>one year accuracy</td>
<td>12-6, 12-8</td>
</tr>
<tr>
<td>operating altitude</td>
<td>12-16</td>
</tr>
<tr>
<td>operating conditions</td>
<td>12-16</td>
</tr>
<tr>
<td>operators</td>
<td>5-16</td>
</tr>
<tr>
<td>options</td>
<td>ii</td>
</tr>
<tr>
<td>overflow</td>
<td>5-7</td>
</tr>
<tr>
<td>overrange</td>
<td>5-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>5-6</td>
</tr>
<tr>
<td>package, contents of</td>
<td>ii</td>
</tr>
<tr>
<td>page, jumping of</td>
<td>5-4</td>
</tr>
<tr>
<td>page scroll</td>
<td>5-4</td>
</tr>
<tr>
<td>Pc</td>
<td>5-6</td>
</tr>
<tr>
<td>PC card</td>
<td>9-1</td>
</tr>
<tr>
<td>PC card, formatting of</td>
<td>9-3</td>
</tr>
<tr>
<td>phase angle</td>
<td>App-17</td>
</tr>
<tr>
<td>phase difference</td>
<td>2-20, 5-6, 5-28, App-17</td>
</tr>
<tr>
<td>phase difference, display format of</td>
<td>5-28</td>
</tr>
<tr>
<td>PNG</td>
<td>9-23</td>
</tr>
<tr>
<td>position</td>
<td>2-28, 6-13</td>
</tr>
<tr>
<td>Post Script</td>
<td>9-23</td>
</tr>
<tr>
<td>power</td>
<td>App-16</td>
</tr>
<tr>
<td>power coefficient, setting of</td>
<td>5-6, App-20</td>
</tr>
<tr>
<td>power consumption, maximum</td>
<td>12-16</td>
</tr>
<tr>
<td>power cord</td>
<td>ii</td>
</tr>
<tr>
<td>power factor</td>
<td>5-6, App-20</td>
</tr>
<tr>
<td>power fuse</td>
<td>11-10</td>
</tr>
<tr>
<td>power loss</td>
<td>App-16</td>
</tr>
<tr>
<td>power range</td>
<td>4-9, 4-10</td>
</tr>
<tr>
<td>power supply</td>
<td>3-4</td>
</tr>
<tr>
<td>power switch, turning ON/OFF of</td>
<td>3-5</td>
</tr>
<tr>
<td>Preset1</td>
<td>8-4, 9-8</td>
</tr>
<tr>
<td>Preset2</td>
<td>8-4, 9-8</td>
</tr>
<tr>
<td>print</td>
<td>2-36</td>
</tr>
<tr>
<td>properties</td>
<td>8-16, 9-28</td>
</tr>
<tr>
<td>Property</td>
<td>8-16, 9-28</td>
</tr>
<tr>
<td>protective grounding</td>
<td>3-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>5-6</td>
</tr>
<tr>
<td>q</td>
<td>5-6</td>
</tr>
<tr>
<td>q+</td>
<td>5-6</td>
</tr>
<tr>
<td>q-</td>
<td>5-6</td>
</tr>
<tr>
<td>Quad</td>
<td>6-17, 7-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>9-29</td>
</tr>
<tr>
<td>R-Continuous</td>
<td>5-41</td>
</tr>
<tr>
<td>R-Normal</td>
<td>5-41</td>
</tr>
<tr>
<td>R/W</td>
<td>9-29</td>
</tr>
<tr>
<td>rack mount</td>
<td>3-3</td>
</tr>
<tr>
<td>rated supply voltage</td>
<td>12-16</td>
</tr>
<tr>
<td>rated supply voltage frequency</td>
<td>12-16</td>
</tr>
<tr>
<td>reactive power</td>
<td>5-6, App-20</td>
</tr>
<tr>
<td>reactive power, equation for</td>
<td>5-25</td>
</tr>
<tr>
<td>Real Time</td>
<td>8-2, 8-9</td>
</tr>
<tr>
<td>Real Time Control</td>
<td>5-42, 8-9</td>
</tr>
<tr>
<td>real-time normal integration mode</td>
<td>5-30, 5-41</td>
</tr>
<tr>
<td>real-time repetitive integration mode</td>
<td>5-30, 5-41</td>
</tr>
<tr>
<td>rear panel</td>
<td>1-1</td>
</tr>
<tr>
<td>recall</td>
<td>2-35, 8-21</td>
</tr>
<tr>
<td>rectified mean value</td>
<td>5-9, App-1</td>
</tr>
<tr>
<td>rectified mean value calibrated to the rms value</td>
<td>5-9, App-1</td>
</tr>
<tr>
<td>Rename</td>
<td>9-38</td>
</tr>
<tr>
<td>repetitive integration mode</td>
<td>5-30, 5-38</td>
</tr>
<tr>
<td>reservation time</td>
<td>5-42</td>
</tr>
<tr>
<td>Reset Items Exec</td>
<td>5-5</td>
</tr>
<tr>
<td>resistance</td>
<td>App-22</td>
</tr>
<tr>
<td>response time</td>
<td>12-9</td>
</tr>
<tr>
<td>RGB video signal</td>
<td>2-37</td>
</tr>
<tr>
<td>rising zero crossing</td>
<td>App-27</td>
</tr>
<tr>
<td>RMEAN</td>
<td>5-9</td>
</tr>
<tr>
<td>mn</td>
<td>App-1</td>
</tr>
<tr>
<td>RMS</td>
<td>5-9</td>
</tr>
<tr>
<td>roll paper</td>
<td>v</td>
</tr>
<tr>
<td>Roman</td>
<td>10-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>5-6</td>
</tr>
<tr>
<td>safety terminal adapter</td>
<td>2-10, 12-11</td>
</tr>
<tr>
<td>sample rate</td>
<td>2-6</td>
</tr>
<tr>
<td>sampled data</td>
<td>2-6</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>10-4</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>voltage</td>
<td>5-6</td>
</tr>
<tr>
<td>voltage and current, determination of</td>
<td>2-7</td>
</tr>
<tr>
<td>voltage fluctuation and flicker measurement mode</td>
<td>3-34</td>
</tr>
<tr>
<td>voltage function and flicker measurement</td>
<td>2-34</td>
</tr>
<tr>
<td>voltage input terminal</td>
<td>3-14</td>
</tr>
<tr>
<td>voltage mode</td>
<td>5-9</td>
</tr>
<tr>
<td>voltage range, setting of</td>
<td>4-6</td>
</tr>
<tr>
<td>VT ratio</td>
<td>4-15</td>
</tr>
<tr>
<td>warm-up time</td>
<td>12-16</td>
</tr>
<tr>
<td>warranty, items not covered by</td>
<td>11-11</td>
</tr>
<tr>
<td>warranty, scope of</td>
<td>11-11</td>
</tr>
<tr>
<td>watt hour</td>
<td>5-6</td>
</tr>
<tr>
<td>WAVE</td>
<td>6-1</td>
</tr>
<tr>
<td>Wave C1 +</td>
<td>6-24</td>
</tr>
<tr>
<td>Wave C1 Trace</td>
<td>6-24</td>
</tr>
<tr>
<td>Wave C2 Trace</td>
<td>6-24</td>
</tr>
<tr>
<td>Wave C2 x</td>
<td>6-24</td>
</tr>
<tr>
<td>Wave Cursor</td>
<td>6-23</td>
</tr>
<tr>
<td>Wave Display</td>
<td>6-3</td>
</tr>
<tr>
<td>Wave Mapping</td>
<td>6-16</td>
</tr>
<tr>
<td>Wave Trace</td>
<td>8-5</td>
</tr>
<tr>
<td>waveform</td>
<td>6-1</td>
</tr>
<tr>
<td>Waveform Computation</td>
<td>2-33</td>
</tr>
<tr>
<td>waveform display data, saving of</td>
<td>9-13</td>
</tr>
<tr>
<td>waveform mapping</td>
<td>7-13</td>
</tr>
<tr>
<td>Waveform Sampling Data</td>
<td>9-9, 9-15</td>
</tr>
<tr>
<td>waveform, zooming of</td>
<td>2-28</td>
</tr>
<tr>
<td>weight</td>
<td>12-16</td>
</tr>
<tr>
<td>WIRING</td>
<td>4-1</td>
</tr>
<tr>
<td>wiring compensation</td>
<td>5-22</td>
</tr>
<tr>
<td>wiring precautions</td>
<td>3-7</td>
</tr>
<tr>
<td>Wiring Setting</td>
<td>4-1</td>
</tr>
<tr>
<td>wiring system</td>
<td>2-9, 4-1</td>
</tr>
<tr>
<td>wiring unit</td>
<td>4-2</td>
</tr>
<tr>
<td>Wp</td>
<td>5-6</td>
</tr>
<tr>
<td>Wp+</td>
<td>5-6</td>
</tr>
<tr>
<td>Wp-</td>
<td>5-6</td>
</tr>
<tr>
<td>WQ</td>
<td>5-6</td>
</tr>
<tr>
<td>WS</td>
<td>5-6</td>
</tr>
<tr>
<td>zero crossing</td>
<td>App-27</td>
</tr>
<tr>
<td>zero suppression</td>
<td>12-6</td>
</tr>
<tr>
<td>zero-crossing filter</td>
<td>App-28</td>
</tr>
<tr>
<td>zero-level compensation</td>
<td>10-1</td>
</tr>
<tr>
<td>zoom</td>
<td>2-28, 6-13</td>
</tr>
</tbody>
</table>