Conductivity Measurements for Boiler Blowdown

下載 (255 KB)

Introduction

To defray energy costs, many industrial plants have their own boilers to generate steam in order to produce a portion of their energy needs. In addition to generating power, the steam may also be used directly in plant processes or indirectly via heat exchangers or steam jacketed vessels.

Problems

The raw water used to feed the boilers contains varying levels of impurities that must be removed to protect the boiler and associated equipment. Pre-treatment processes such as reverse osmosis, ion exchange, filtration, softening, and demineralization may be used to reduce the level of impurities, but even the best pretreatment processes will not remove them all and will continuously carry some dissolved mineral impurities into the boiler.

These dissolved impurities accumulate in the boiler water when steam is made; only pure water leaves the boiler. The increasing concentration of dissolved solids leads to carryover of boiler water into the steam, damaging piping, steam traps, and other process equipment. The concentration of dissolved solids increases until the boiler water can no longer hold all of them in solution and a saturation point is reached. They then begin to drop out becoming suspended solids and forming a sludge or scale on the boiler walls and piping.

Boiler problems are avoided by periodically discharging or “blowing down” water from the boiler to reduce the concentrations of suspended and total dissolved solids. Surface water blowdown is often done continuously to reduce the level of dissolved solids, and bottom blowdown is performed periodically to remove sludge or suspended solids from the bottom of the boiler. The frequency and level of blowdown required each day depends upon the concentration of impurities and the rate at which they build up in the boiler water.

Boilers operating on soft water will require more top or skimmer blowdown to remove dissolved solids, whereas boilers operating on hard water will require more bottom blowdown to remove the settled solids. While control of suspended and dissolved solids in the boiler is critical, care must be taken to avoid excessive blowdown, as this would increase the demand for make-up (feed) water, treatment chemicals, and fuel.

Benefits/Solutions

The benefits for proper boiler blowdown control include the following:

  • Reduced operating costs (less feedwaterconsumption, chemical treatment, and higher heating efficiency).
  • Reduced maintenance and repair costs (minimized carryover and deposits).
  • Cleaner and more efficient steam.
  • Minimized energy loss from boiler blowdown can save about 2% of a facility’s total energy use with an average simple payback of less than one year.

The most common methodologies used for boiler blowdown control include: (1) continuous, (2) manual and (3) automatic.

Continuous blowdown utilizes a calibrated valve and a blowdown tap near the boiler water surface. As the name implies, it continuously takes water from the top of the boiler at a predetermined rate to reduce the level of dissolved solids. The rate is usually set slightly greater than necessary to maintain safety protocols.

Manual blowdown is accomplished at most plants by taking boiler water samples once a shift and adjusting the blowdown accordingly. This grab sample approach means that operators cannot immediately respond to changes in feedwater conditions or variations in steam demand and scaling conditions can occur and go undetected until the next sample check.

Automatic blowdown control is achieved by constantly monitoring the conductivity value of the boiler water, adjusting the blowdown rate, and the duration based on a specific conductivity set point. This provides control of the water chemistry.

Manual blowdown control cannot maintain this level of control more than 20% of the time. Upgrading from manual blowdown control to automatic control can reduce a boiler’s energy use by 2 – 5 percent and blowdown water losses by up to 20 percent.

Feed water usually contains one limiting component such as chloride, sulfate, carbonate, or silica. Even if the component is not conductive, as is the case with silica, its concentration is usually proportional to a component that can be measured by conductivity. Therefore, conductivity is a viable measurement for monitoring the overall total dissolved solids present in the boiler. A rise in conductivity indicates a rise in the “contamination” of the boiler water.

Summary

The frequency and duration required for boiler blowdown is significantly affected by the water quality. Improving feedwater quality through makeup water, chemical treatment and proper blowdown control can significantly reduce treatment and operational costs including:

  • Reduced operating costs
  • Reduced maintenance and repair costs
  • Cleaner and more efficient steam
  • Energy savings

Increased efficiency and reduced operating costs can be achieved by using the Yokogawa Conductivity Series line of products. Control configurations will carry with the application and the customer’s requirements.

Product Recommendations

Conductivity Measurement System:

Process Liquid Analyzer:
2-wire FLXA202 Conductivity Analyzer
4-wire FLXA402 Conductivity Analyzer

2-wire FLXA202 Conductivity Analyzer/4-wire FLXA402 Conductivity Analyzer

Sensor Selection:
Analog and Digital SMART sensors are available. Analog options allow users to interface with a system that has been used historically. SENCOM™ technology, which allows sensors to transmit and receive data when connected to a transmitter/analyzer or a PC. The SMART digital sensors maintain specific measurement and calibration data on an integrated chip along that is an integral part of the sensor providing easy plug and play solutions. The data management software optimizes the performance of sensors for enhanced reliability and process safety.

Option #1:
SC42-S*34 Large-Bore Conductivity Sensor
(fittings available for Flow-Thru, Insertion, or Immersion installations)
Option #2:
SC4A Conductivity Sensor
(fittings available for Insertion, Sanitary, or Retractable installations.)

SC4A Conductivity Sensor

Another alternative would be Toroidal or Inductive Conductivity Sensor:
ISC40 Inductive Conductivity Sensor (fittings available for Flow-thru, Insertion, or Immersion installations)

ISC40 Inductive Conductivity Sensor

產業別

  • 化工

    化工廠依靠連續和批量的生產製程,每個生產製程對控制系統都有不同的要求。連續的製程需要一個強大而穩定的控制系統,該系統不能因為自身失效而導致生產線關閉;批量製程的重點在於擁有一個可以靈活調整公式程序的控制系統。兩種系統都需要在產品質量記錄中進行管理,並且能夠執行非常規操作。橫河電機憑借廣泛的產品組合、經驗豐富的系統工程師、遍及全球的銷售和服務網絡,為每個工廠流程提供解決方案。

    更多
  • 石油和天然氣下游

    近年來,石油和天然氣下游產業面臨著越來越多的挑戰。這些挑戰包括待加工原料的特性變化、工業設施及設備的老化、能源成本的上升、缺乏能夠使煉油廠安全有效運行的熟練技術工人,以及市場和客戶的需求不斷變化。
    多年來,橫河與許多下游公司合作,致力於提供應對這些挑戰和問題的工業解決方案。橫河的解決方案幫助工廠投資者盡可能實現最大的盈利能力和工廠內可持續的安全。

     

    更多
  • 造紙

    面對不斷變化的市場需求,造紙行業的競爭也愈演愈烈。橫河電機可以幫助節能工廠實現全球可持續性發展。

    更多
  • 食品 & 飲料

    在食品製造業中,除了需要應對「食品安全」、「糧食安全」、「降低成本」這些傳統挑戰,還需要面對病菌和減少勞動力的挑戰。
    橫河Yokogawa與客戶密切合作、共同應對挑戰、提出理想工廠的解決方案,幫助生產廠商創造更舒適的工作環境。

    更多

相關產品&解決方案

  • 2-Wire Transmitter/Analyzer FLXA202

    The FLEXA™ series analyzers are used for continuous on-line measurements in industrial installations. With an option for single or dual sensor measurement, they are the most flexible two-wire analyzer available.

    更多
  • Digital SMART SENCOM™ Adapter, SA11

    Reusable SMART adapter, requiring only the analog sensor to be disposed of when it reaches the end of its lifetime. With the SENCOM 4.0 platform, Yokogawa delivers reduced costs and waste while contributing to its long-term business goals of a sustainable future for all.

    更多
  • SENCOM™ SMART數字傳感器

    數字或SMART傳感器將特定的測量和標定數據保存在集成芯片上。集成芯片是傳感器的重要組成部分。這些數據可以通製數據管理軟件(如SPS24)在傳感器和製程變送器或實驗室PC之間進行交換。

    更多
  • 電導率分析儀

    電導率測量儀、分析儀和變送器用於對電導率、電阻率、WIFI、軟化水、RO水、百分比濃度、鍋爐水排污和TDS進行連續測量和監測。

    更多

置頂