Introduction
The proliferation of microorganisms and the resultant formation of slime is a problem which commonly occurs in aqueous systems. Problematic slime producing microbes may include bacteria, fungi and/or algae. Slime deposits typically occur in many industrial aqueous systems including cooling water systems, pulp and paper mill systems, petroleum operations, clay and pigment slurries, recreational water systems, air washer systems, decorative fountains, food, beverage, and industrial process pasteurizers, sweetwater systems, gas scrubber systems, latex systems, industrial lubricants, cutting fluids, etc.
Growth of these organisms is a serious problem in municipal and industrial water systems such as once-through or re- circulating cooling water systems, cooling ponds, intake pipes, ballast water tanks and ship reservoirs that draw water from infested bodies of water. Microbes may cause many problems including pressure loss from fouling of piping and heat exchanger, loss of heat exchanger efficiency due to coating of the heat exchange surfaces, promotion and acceleration of corrosion on metal surfaces, increased down time, or breaks in paper sheets in pulp and paper systems, and deterioration of cooling tower components.
This growth can cause severe plugging and damage to the systems they colonize, resulting in system down time and costly cleanings and repairs. As a consequence of the deleterious effects of uncontrolled biological growth and contamination in many industrial processes, different biocides and antimicrobials have been developed to aid in eliminating and controlling biological growth. Biocides and antimicrobials are used to control microbial growth in a number of different aqueous media.
Often, one biocide is insufficient to control biological growth in the aqueous media. Biocides may act in combination, i.e. synergistically, to yield better biocidal performance as opposed to the efficacy obtained when each biocide is used separately. The combination of two biocides may yield enhanced efficacy beyond the cumulative or additive effect of the two biocides. This likely reflects a synergistic biocidal effect on some essential component(s) of the cell for survival and sustained growth. A combination of two biocides that are synergistic allows for the addition of lesser amounts of the individual biocides to achieve the desired level of control. A common practice is to alternate feeding two different types of biocide, not allowing the biological growth to become resistant to one or the other. This "shock" treatment is very successful in controlling undesirable biological growth. This has both advantageous environmental and economic impacts. It allows for reduced discharge of potential environmental pollutants and a more cost effective control program for diverse industrial systems.
Chlorine is used as an oxidizing biocide to control this biological growth in most industrial cooling towers. Monitoring the ORP (Oxidation Reduction Potential)/redox is very useful in its ability to correlate millivolt readings to sanitization strength of the water.
For Chlorine (Cl2) to function properly in the cooling towers it must be present in the oxidizing forms of hypochlorous acid (HOCl) or hypochorite ion (OCl-). The equilibrium between the three species is pH dependent and can be monitored by using oxidation-reduction potential (ORP) electrodes.
ORP is a measure of a solutions oxidizing or reducing strength. The chemical way to look at redox processes is that the reductant transfers electrons to the oxidant. Thus, in the reaction, the reductant or reducing agent loses electrons and is oxidized and the oxidant or oxidizing agent gains electrons and is reduced. When electrons are transferred from one species to another in a chemical reaction, the reaction is called an oxidation-reduction reaction; where the oxidizing and reducing agents are called a redox pair.
Oxidation and reduction reactions occur together, the electrons generated by a reduction reaction must be acquired by an oxidation reaction. The electron transfer between the two species continues until equilibrium is reached.
ORP measure the ratio of the activities of the oxidizing and reducing species in a solution. This indicates the solutions electron activity, i.e., its ability to oxidize or reduce another substance; it does not indicate the concentration of the predominant oxidizing or reducing agent. The speed of response varies with the concentration of the redox system, high concentrations are fast and low concentrations are slow.
Activity and Measurement of Chlorine
Below a pH of 1.9, chlorine exists as a diatomic molecule (Cl2) in water. As the pH increases above 1.9, chlorine oxidizes-water to produce HOCl, which further dissociates into OCl above a pH of 7.3. Elemental chlorine is not as effective in killing organisms as HOCl and OCl-. Thus, for optimum effectiveness it is desirable to control the pH of the cooling tower between 7-8 pH. It is also necessary to control the quantity of chlorine in the tower to insure there is enough to control the biological growth, but not so much that it causes corrosion of equipment or creates an excessive load on the water treatment facility. An ORP measurement system can be used to indicate both the quantity and activity of the chlorine in cooling water.
Since addition of chlorine increases the oxidizing capability of water, measurement of the ORP provides a useful indicator of the quantity and effectiveness of the chlorine present in the water. However, as we have seen, the pH affects the oxidizing potential of the available chlorine so the ORP will vary with pH changes as well as changes in the chlorine levels. To provide an indication of chlorine level we must compensate the ORP measurement for the effects of varying pH. One way to do this is to replace the Ag/AgCl reference electrode normally used with the ORP electrode with a pH measuring electrode.
Measurement System
If the total amount of chlorine in the system remains constant, but the pH changes, there will be a corresponding change in the measured ORP reading. Therefore to us ORP to control chlorine addition we must compensate the measurement for changes in pH. The simplest way to do this is substituting a pH electrode for the reference electrode used with a FLXA21 or FLXA402 configured for ORP service. This technique is only valid over a narrow range pH 6.5-8.0, and should only be used in simple systems that operate at stable temperatures. (The measurement is not compensated for temperature changes.) It should not be used in situations where there may be a large change in background composition such as wastewater streams or treatment ponds. Figure 1 shows typical ppm chlorine levels verses mV reading values.
Product Recommendations
FLXA402 four-wire Converter or FLXA202/FLXA21 two-wire Analyzer
FF20-P33 Polypropylene Flow Fitting with SM21-PT9 Platinum ORP sensor
SM21-AG4 pH glass sensor (used as reference)
Note: For additional information on these applications, please contact Yokogawa Analytical Department.
Industrie
-
Power
In the mid 1970s, Yokogawa entered the power business with the release of the EBS Electric Control System. Since then, Yokogawa has steadfastly continued with the development of our technologies and capabilities for providing the best services and solutions to our customers worldwide.
Yokogawa has operated the global power solutions network to play a more active role in the dynamic global power market. This has allowed closer teamwork within Yokogawa, bringing together our global resources and industry know-how. Yokogawa's power industry experts work together to bring each customer the solution that best suits their sophisticated requirements.
Prodotti e Soluzioni Correlati
-
2-Wire Transmitter/Analyzer FLXA21
The FLEXA™ series analyzers are used for continuous on-line measurements in industrial installations. With an option for single or dual sensor measurement, they are the most flexible two-wire analyzer available.
-
4-Wire pH/ORP Analyzer PH450
The PH450 pH and ORP analyzer is a multivariable analyzer that combines pH with temperature and ORP (Redox) measurement, which can be utilized through different output functions: two mA current outputs, four independent SPDT contact outputs and HART.
-
Flow/NPT Fittings FF20/FS20
Yokogawa has invested considerable design and development time in producing a full range of fittings with particular emphasis on designs that reduce installation and maintenance time and consequently save operation costs.
-
Industrial pH/ORP Electrodes
The heart of a pH measuring loop is the electrode system. Yokogawa has designed a wide range of electrodes to ensure this heart keeps beating under the most severe conditions.
-
pH and ORP Analyzers
pH and ORP meters, analyzers and transmitters are used for continuous process monitoring of pH and ORP to ensure water/product quality, monitor effluent discharge, batch neutralization, pulp stock, scrubbers, cooling towers, chemical, water/wastewater treatment and many other applications.
-
pH and ORP Sensors
pH electrodes and sensors are the sensing portions of a pH measurement. Various installation options including retractable, flow thru, immersion, and direct insertion. Proper pH electrode/sensor selection is critical for optimal measurement results.