Cellular-Morphological Change Analysis

Download (384 KB)

Introduction

In eukaryotic cells, actin filaments form cytoskeleton, a network of two types of fibrous structures, filaments and tubules. Cytoskeleton plays various key roles in cells such as the arrangement of cellular organelles, keeping the shape of cell, and power generation for cellular movement accompanying cell morphological changes in occasions such as cell division, muscle contraction and ciliary movement. In cells, many kinds of proteins associated with cytoskeleton precisely regulate the distribution and dynamic behavior of filaments; therefore, some kind of drug stimulation causes remarkable changes in the number, length, distribution, movement and stability of cytoskeleton filaments. The following describes the analysis of morphological changes in cytoskeleton caused by drug stimulation, using the “Morphology Analysis” protocol.

Recognition of the cytoskeleton of MRC5 cell

Fig1. Recognition of the cytoskeleton of MRC5 cell (Experiment 1)
A-1 and B-1 are original images, and A-2 and B-2 are recognized images.

 

Morphological change due to A10 cell apoptosis

Fig2. Morphological change due to A10 cell apoptosis(Experiment 2)
(1) Original images and analysis images
Original image (a) and analysis image (c) of control cells
Original image (b) and analysis image (d) of Staurosporine (10μM) treated cells

 

Morphological change due to A10 cell apoptosisMorphological change due to A10 cell apoptosis

Left : (2) Number of cytoskeletons
Right : (3) Average cytoskeleton length and variation

 

. Morphological change due to A10 cell apoptosis

(4) Cytoskeleton length distribution

 

. Morphological change due to A10 cell apoptosis

(5) Cytoskeleton direction
(Horizontal direction as 0 degrees)

Experiment procedure

Experiment1

  1. MRC5 cells were seeded on 96-well plates at 20,000 cells/well, cultured for 24 hours, fixed with formaldehyde and stained actin with phalloidin.

Experiment2

  1. A10 cells were seeded on 96-well plates at 10,000 cells/well, cultured for 24 hours, and induced apoptosis by adding staurosporine (0-10μM, 2 hours).
  2. Fixed the cells with formaldehyde and stained actin with phalloidin.

The following were common procedure in both experiments:

  1. Images were captured using the CellVoyager CV6000 under the following conditions:
    • Magnification: 40x objective lens
    • Images captured per well: 1
    • Exposure time (Alexa 488): 800msec
  2. The captured images were analyzed using the “Morphology Analysis” protocol.
    • Cytoskeleton regions were identified from the original images.
    • Feature quantities of identified cytoskeleton were measured.

Results and Conclusion

Changes in MRC5 cytoskeletal formation when apoptosis was induced were analyzed, using the “Morphology Analysis” protocol. As a result, significant differences from the control were identified in the number of actin filaments and the distribution of filament lengths (Fig. 2). Since the structural changes in cytoskeleton occur in cell migration, the “Morphology Analysis” protocol will be a useful tool for the study of the inflammatory response and also cancer metastasis.


Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

 

Yokogawa's Official Social Media Account List

Social Media Account List


Related Products & Solutions

  • Benchtop System

    The CQ1 provides the highest quality confocal images and extended live cell imaging in a space-saving benchtop design. 

    See More
  • High-Throughput Screening

    CellVoyager CV8000 is the most advanced high-content screening system. The improved built-in incubator lets you analyze extended live cell responses. With its expandability, 4 cameras, 5 lasers and an optional built-in pipettor, the system permits increasingly complex assay development and high-content screening.

    See More
  • Life Science

    Yokogawa’s high content analysis systems and dual spinning disk confocal technologies provide high-speed and high-resolution live cell imaging, enabling leading-edge research around the world.

    See More

Top