List of Selected Publications : CSU-X1

Download (138 KB)

[1] S. Akaberi et al., “Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death,” J. Exp. Bot., vol. 69, no. 12, pp. 2883–2896, 2018.

[2] P. Arendarski, J. Mischke, A. Kleinknecht, G. H. Braus, D. Wang, and B. Popova, “Sumoylation Protects Against β-Synuclein Toxicity in Yeast,” Front. Mol. Neurosci., vol. 11, p. 94, 2018.

[3] H. Arlt, A. W. Fischer, R. V. Farese, T. C. Walther, C. B. K. Jayson, and Z. W. Lai, “Rab18 is not necessary for lipid droplet biogenesis or turnover in human mammary carcinoma cells,” Mol. Biol. Cell, vol. 29, no. 17, pp. 2045–2054, 2018.

[4] D. Baczyk, M. C. Audette, E. Coyaud, B. Raught, and J. C. Kingdom, “Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress,” J. Physiol., vol. 596, no. 9, pp. 1587–1600, Jul. 2018.

[5] S. Bais, C. T. Berry, X. Liu, G. Ruthel, B. D. Freedman, and R. M. Greenberg, “Atypical pharmacology of schistosome TRPA1-like ion channels,” PLoS Negl. Trop. Dis., vol. 12, no. 5, p. e0006495, 2018.

[6] I. Bennabi et al., “Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment,” EMBO Rep., vol. 19, no. 2, pp. 368–381, 2018.

[7] S. J. Coultrap et al., “CaMKII Metaplasticity Drives Aβ Oligomer-Mediated Synaptotoxicity,” Cell Rep., vol. 23, no. 11, pp. 3137–3145, 2018.

[8] N. M. de Vasconcelos, N. Van Opdenbosch, H. Van Gorp, E. Parthoens, and M. Lamkanfi, “Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture,” Cell Death Differ., vol. 26, no. 1, pp. 146–161, 2019.

[9] R. Desimone et al., “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol., vol. 34, no. 9, pp. 987–992, 2016.

[10] M. Duta-Mare et al., “Lysosomal acid lipase regulates fatty acid channeling in brown adipose tissue to maintain thermogenesis,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1863, no. 4, pp. 467–478, Apr. 2018.

[11] J. R. Faeder et al., “Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine Reuptake Efficiency,” Eneuro, vol. 5, no. 1, p. ENEURO.0298-17.2017, 2018.

[12] C. M. Galmarini et al., “Plocabulin, a novel tubulin-binding agent, inhibits angiogenesis by modulation of microtubule dynamics in endothelial cells,” BMC Cancer, vol. 18, no. 1, p. 164, 2018.

[13] Y. Ganor et al., “HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy,” Nat. Microbiol., vol. 4, no. 4, pp. 633–644, 2019.

[14] Y. Hamamura, M. Nishimaki, H. Takeuchi, A. Geitmann, D. Kurihara, and T. Higashiyama, “Live imaging of calcium spikes during double fertilization in Arabidopsis,” Nat. Commun., vol. 5, p. 4722, 2014.

[15] R. Higuchi et al., “Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter,” PLOS Biol., vol. 16, no. 4, p. e2004426, 2018.

[16] J. H. Hou, J. M. Kralj, A. D. Douglass, F. Engert, and A. E. Cohen, “Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents,” Front. Physiol., vol. 5 AUG, p. 344, 2014.

[17] S. Huet, G. Timinszky, R. Smith, H. Sellou, and C. Chapuis, “CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation,” Nucleic Acids Res., vol. 46, no. 12, pp. 6087–6098, 2018.

[18] M. P. N. Juniper, M. Weiss, I. Platzman, J. P. Spatz, and T. Surrey, “Spherical network contraction forms microtubule asters in confinement,” Soft Matter, vol. 14, no. 6, pp. 901–909, 2018.

[19] M. M. Kelly et al., “Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment,” JCI Insight, vol. 3, no. 9, 2018.

[20] A. Kimura et al., “ Tumor suppressor APC is an attenuator of spindle-pulling forces during C. elegans asymmetric cell division ,” Proc. Natl. Acad. Sci., vol. 115, no. 5, pp. E954–E963, 2018.

[21] K. Kurokawa et al., “Visualization of secretory cargo transport within the Golgi apparatus,” J. Cell Biol., p. jcb.201807194, Mar. 2019.

[22] T. C. Lim, T. Hatano, A. Kamnev, M. K. Balasubramanian, and T. G. Chew, “Equatorial Assembly of the Cell-Division Actomyosin Ring in the Absence of Cytokinetic Spatial Cues,” Curr. Biol., vol. 28, no. 6, pp. 955-962.e3, 2018.

[23] J. Liu et al., “Supramolecular Modular Approach toward Conveniently Constructing and Multifunctioning a pH/Redox Dual-Responsive Drug Delivery Nanoplatform for Improved Cancer Chemotherapy,” ACS Appl. Mater. Interfaces, vol. 10, no. 31, pp. 26473–26484, 2018.

[24] M. F. Manolson, R. A. F. Reithmeier, S. Esmail, Y. Yao, N. Kartner, and J. W. Kim, “ N-linked glycosylation of a subunit isoforms is critical for vertebrate vacuolar H + -ATPase (V-ATPase) biosynthesis ,” Journal of Cellular Biochemistry, vol. 119, no. 1. pp. 861–875, 23-Jul-2017.

[25] A. D. McAinsh et al., “ Rapid production of pure recombinant actin isoforms in Pichia pastoris ,” J. Cell Sci., vol. 131, no. 8, p. jcs.213827, 2018.

[26] O. J. Müller et al., “Ion Channel Dysfunctions in Dilated Cardiomyopathy in Limb-Girdle Muscular Dystrophy,” Circ. Genomic Precis. Med., vol. 11, no. 3, p. e001893, 2018.

[27] H. Nagar, E. Dekel, D. Kasimov, and Y. Roichman, “Non-diffracting beams for label-free imaging through turbid media,” Opt. Lett., vol. 43, no. 2, p. 190, 2018.

[28] V. T. Nguyen, P. Dawson, Q. Zhang, Z. Harris, and K. H. Limesand, “Administration of growth factors promotes salisphere formation from irradiated parotid salivary glands,” PLoS One, vol. 13, no. 3, p. e0193942, 2018.

[29] H. Obinata, A. Sugimoto, and S. Niwa, “Streptothricin acetyl transferase 2 (Sat2): A dominant selection marker for Caenorhabditis elegans genome editing,” PLoS One, vol. 13, no. 5, p. e0197128, 2018.

[30] S. Pal-Ghosh, G. Tadvalkar, S. C. Pflugfelder, A. Williams, C. S. de Paiva, and M. A. Stepp, “Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice,” Exp. Eye Res., vol. 169, pp. 91–98, 2018.

[31] K. Ratnayake, J. L. Payton, O. H. Lakmal, and A. Karunarathne, “Blue light excited retinal intercepts cellular signaling,” Sci. Rep., vol. 8, no. 1, pp. 246–250, 2018.

[32] K. Saito et al., “TAG-1–assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding,” Nat. Neurosci., vol. 16, no. 11, pp. 1556–1566, 2013.

[33] B. F. Schmidt et al., “Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking,” Biochemistry, vol. 57, no. 5, pp. 861–871, 2017.

[34] B. Souquet et al., “Erratum: Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in Embryonic Stem Cells (Cell Reports (2018) 23(8) (2443–2454), (S2211124718306296) (10.1016/j.celrep.2018.04.070)),” Cell Rep., vol. 25, no. 7, p. 1994, 2018.

[35] M. P. Takahashi et al., “rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences,” in Nature Communications, vol. 9, no. 1, 0000 0001 2157 9291grid.11843.3fIGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France0000 0001 2173 938Xgrid.5338.dTranslational Genomics Group, Interdisciplinary Research Structure for Biotechnology and Biomedicine BIOTECMED, 2018.

[36] M. Ueda et al., “Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis,” Dev. Cell, vol. 34, no. 2, pp. 242–251, 2015.

[37] S. B. van Engelenburg et al., “Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation,” Nat. Commun., vol. 9, no. 1, p. 1861, 2018.

[38] J. Zhang et al., “Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay,” Proc. Natl. Acad. Sci., vol. 115, no. 12, pp. E2849–E2858, 2018.

Link to article search site

Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

Yokogawa's Official Social Media Account List

Social Media Account List

Related Products & Solutions

  • High Speed

    The CSU-X1 is widely recognized as the leading tool for live cell imaging with 2,000 fps capability.

    See More
  • Life Science

    Yokogawa’s high content analysis systems and dual spinning disk confocal technologies provide high-speed and high-resolution live cell imaging, enabling leading-edge research around the world.

    See More
  • Spinning Disk Confocal CSU

    Using our proprietary dual spinning disk design, Yokogawa’s confocal scanner units transform optical microscopes by enabling real-time live cell imaging.

    See More