Have Questions?
Contact a Yokogawa Expert to learn how we can help you solve your challenges.
Changes in intracellular Ca2+ concentration are an important analysis target in the study of intracellular signal transduction related to physiological phenomenon, such as muscle cell contraction. The following are the results of imaging and analysis of the increase of intracellular Ca2+ concentration in A10 cells, using the CellVoyager, by treatment of ionomycin, a Ca2+ ionophore.
Using Ca2+ probe, Fluo4, images were captured using the CellVoyager (Fig. 1a~1c), and temporal changes in intracellular Ca2+ concentration were analyzed with its analysis software. The analysis software allows for the recognition of individual cells, thus enabling data acquisition for temporal changes in individual cells (Fig. 2a). Therefore, it is possible to exclude cells with abnormal reactions and analyze cells with pathognomonic reactions only. In addition, by varying the type and concentration of reagents for each well, variation in reactions can be analyzed (Fig. 2b, 2c).
1(b)
Fig. 1a:Images taken at 0.2sec intervals, from 2.6sec to 5.4sec after the start of imaging. Ionomycin stimulation was started 3.0sec after the start of imaging (the image in red frame).
Fig. 1b: Time lapse movie
Fig. 2a: Kinetic analysis of Fluo4 bright intensities of individual cells in each well
Fig. 2b: Kinetic analysis of average Fluo4 bright intensities in each well
Fig. 2c: Kinetic analysis of average Fluo4 bright intensities at various ionomycin concentrations
*For all graphs above, the fluorescence intensity at 2.9sec after the start of imaging is converted to zero as a reference.
A10 cells were seeded on 96-well plates at the ratio of 10,000 cells/well and cultured for 24 hours, then a CO2 indicator, Fluo4, was added (Final concentration 1μM, reaction time: 20min), to monitor intercellular Ca2+-influx.
Time lapse images were captured using the CellVoyager CV6000 under the following conditions.
Ionomycin was added to the cells using the built-in pipettor.
Ionomycin was dispensed from each well of the source plate into each well of the assay plate (A10 cells) in one to one correspondence.
The images were analyzed using the analysis software under the following conditions.
Spotfire® is a registered trademark of TIBCO Software Inc.
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
CellVoyager CV8000 is the most advanced high-content screening system. The improved built-in incubator lets you analyze extended live cell responses. With its expandability, 4 cameras, 5 lasers and an optional built-in pipettor, the system permits increasingly complex assay development and high-content screening.
Our high-content analysis (HCA) systems utilize powerful software to address a wide range of research applications from basic science to complex compound screening.
Yokogawa’s high content analysis systems and dual spinning disk confocal technologies provide high-speed and high-resolution live cell imaging, enabling leading-edge research around the world.
Contact a Yokogawa Expert to learn how we can help you solve your challenges.