Evaluation of cell-culture condition in CV8000’s internal stage incubator

Download (817 KB)


Live cell imaging is an extremely efficient technique that allows the collection of cellular timelapse information in a single image acquisition. The technique requires the preparation of devices that maintain an optimum environment (temperature, CO2 concentration, humidity control) for preserving cells in their normal condition. This technical note shows the evaluation results of the internal stage incubator of the CellVoyager CV8000 high-content analysis system. Evaluation consisted of the investigation of cell proliferation variation within well plates, and comparison against a conventional CO2 incubator.

Experimental procedure

  1. HeLa cells stably expressing Azami-Green (green fluorescent protein) were seeded (500 cells/well) in 250uL of medium in 96-well plates (Greiner #655896), and incubated for 24hrs. (Two plates were prepared.)
  2. One plate was incubated for 72 hours in a conventional CO2 incubator. Imaging was performed at 0hrs and 72hrs using the CV8000.
    The other plate underwent live cell imaging using the CV8000. Whole well imaging was performed at 3hr intervals for 72hrs with a 4x objective lens.
  3. Analysis was performed using the high-content analysis software CellPathfinder.
    The total area covered with cells in each well was calculated to evaluate the proliferation of cells. The variation of proliferation rate across wells was investigated. A comparison with the conventional CO2 incubator was also made.
A1 well

Fig 1(a). Time lapse movie : A1 well (72hrs)

B2 well

Fig 1(b). Time lapse movie : B2 well (72hrs)

C3 well

Fig 1(c). Time lapse movie : C3 well (72hrs)

D6 well

Fig 1(d). Time lapse movie : D6 well (72hrs)

Variation of cell proliferation rates within the well plate

Fig 1(e). Line graphs of cell proliferation for each well

Vertical axis: total area (total area of cells in that well) Horizontal axis: time (0-72hrs)
Cell proliferation deteriorated in the plate’s corner wells; however it continued at a good rate in the other wells.
Time lapse movie under the similar condition : comparison of each wells :  Play


Total area ratio for each well (total area at 72hrs / total area at 0hrs)

Change in total area ratio over time (error bars show standard deviation)

Fig 2. Variation of cell proliferation rates within the well plate (n=3)

(A) Total area ratio for each well (total area at 72hrs / total area at 0hrs)
96 well average: 7.7
96 well coefficient of variation (standard deviation/average): 8.5×10-2
36 well coefficient of variation (perimeter wells): 1.1×10-1
60 well coefficient of variation (except perimeter wells): 5.1×10-2
(B) Change in total area ratio over time (error bars show standard deviation)
After 24hrs, there was no variation in the total area ratio across groups. Even after 72hrs, perimeter wells (except corner wells) showed similar results to the center wells.

Proliferation ratio comparison with a conventional CO2 incubator

Fig 3. Proliferation ratio comparison with a conventional CO2 incubator (n=3)

Comparison of the cell proliferation ratio 72hrs after seeding, for each well, between a regular CO2 incubator and the CV8000
CV8000 total area ratio / CO2 incubator total area ratio×100
(The nearer the value to 100, the more similar cell proliferation was between the CV8000 and the CO2 incubator.)
96 well average: 90
36 perimeter well average: 81
60 well average (except perimeter wells): 96


The results showed there was little variation in cell proliferation across wells (except perimeter wells) in the CV8000’s internal incubator, and the performance of it was comparable to that of a conventional CO2 incubator. It is generally understood that cell proliferation rates deteriorate on the perimeter of well plates due to culture medium evaporation. In this evaluation, however, a large variation in proliferation rates between the perimeter wells (except corner wells) and center wells was not observed. These results indicate that the CV8000’s internal incubator possesses sufficient performance for live cell imaging.


Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn


Yokogawa's Official Social Media Account List

Social Media Account List

Related Products & Solutions


CellPathfinder is designed for our HCA systems, CQ1 and the CellVoyager series. From beginners to experts, the analysis software lets you quantify subtle physiological changes and even label-free samples with various graph options.

High-Throughput Screening

CellVoyager CV8000 is the most advanced high-content screening system. The improved built-in incubator lets you analyze extended live cell responses. With its expandability, 4 cameras, 5 lasers and an optional built-in pipettor, the system permits increasingly complex assay development and high-content screening.

High Content Analysis CellVoyager

Our high-content analysis (HCA) systems utilize powerful software to address a wide range of research applications from basic science to complex compound screening.

Life Science

Yokogawa’s high content analysis systems and dual spinning disk confocal technologies provide high-speed and high-resolution live cell imaging, enabling leading-edge research around the world.


Have Questions?

Contact a Yokogawa Expert to learn how we can help you solve your challenges.