Introduction
Changes in intracellular Ca2+ concentration are an important analysis target in the study of intracellular signal transduction related to physiological phenomenon, such as muscle cell contraction. The following are the results of imaging and analysis of the increase of intracellular Ca2+ concentration in A10 cells, using the CellVoyager, by treatment of ionomycin, a Ca2+ ionophore.
Analysis Results
Using Ca2+ probe, Fluo4, images were captured using the CellVoyager (Fig. 1a~1c), and temporal changes in intracellular Ca2+ concentration were analyzed with its analysis software. The analysis software allows for the recognition of individual cells, thus enabling data acquisition for temporal changes in individual cells (Fig. 2a). Therefore, it is possible to exclude cells with abnormal reactions and analyze cells with pathognomonic reactions only. In addition, by varying the type and concentration of reagents for each well, variation in reactions can be analyzed (Fig. 2b, 2c).
1(b)
Fig. 1a:Images taken at 0.2sec intervals, from 2.6sec to 5.4sec after the start of imaging. Ionomycin stimulation was started 3.0sec after the start of imaging (the image in red frame).
Fig. 1b: Time lapse movie

Fig. 2a: Kinetic analysis of Fluo4 bright intensities of individual cells in each well

Fig. 2b: Kinetic analysis of average Fluo4 bright intensities in each well

Fig. 2c: Kinetic analysis of average Fluo4 bright intensities at various ionomycin concentrations
*For all graphs above, the fluorescence intensity at 2.9sec after the start of imaging is converted to zero as a reference.
Experiment procedure / Analysis method
Preparation of reagents
A10 cells were seeded on 96-well plates at the ratio of 10,000 cells/well and cultured for 24 hours, then a CO2 indicator, Fluo4, was added (Final concentration 1μM, reaction time: 20min), to monitor intercellular Ca2+-influx.
Imaging
Time lapse images were captured using the CellVoyager CV6000 under the following conditions.
Ionomycin was added to the cells using the built-in pipettor.
- Imaging
- Magnification: 20x objective lens
- Exposure time: 100msec
- Imaging interval: 100msec over a period of 20sec
- Ionomycin dripping: 50μM 3sec after the start of imaging
- Ionomycin final concentration: 0~5μM
- Images captured per well: 1 Field(well center)
- Ionomycin treatment conditions:
- Air gap: 30μl
- Aspirate volume: 50μl
- Aspirate speed: 33μl/sec
- Dispense volume: 80μl
- Dispense speed: 22μl/sec
Built-in pipettor setting (Kinetics Module)
Ionomycin was dispensed from each well of the source plate into each well of the assay plate (A10 cells) in one to one correspondence.
Image Analysis
The images were analyzed using the analysis software under the following conditions.
- Graphs were created using Spotfire®.
- Binarization: Sigma Threshold Object Diameter [25] Sigma [100]
- Binary Transform: Opening Circle Circle Radius [7]
- Labeling: Divide Each Region Watershed Threshold [50] Select Region For Area MinArea [640] MaxArea [999999]
- Logical Operating: Region Operator Region1 [After Labeling] Operator Type [EXPAND] Region2 [Cytoplasm]
Spotfire® is a registered trademark of TIBCO Software Inc.
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相关产品&解决方案
-
CV8000高内涵筛选系统
CellVoyager CV8000是先进的高内涵筛选系统。改进的内置培养箱可以让客户分析长期的活细胞反应。凭借其可扩展性、4个摄像头、5个激光器和可选的内置移液器,该系统允许日益复杂的分析开发和高内涵筛选。
-
生命科学
横河电机高度精密、灵敏的技术可实现快速、准确的测量,加速创新研究、药物开发和大规模生物生产,助力揭示生命奥秘。
-
高内涵分析
我们的高内涵分析系统利用强大的分析软件助力从基础科学到药物发现筛选的一系列研究应用。