Unraveling Molecular Mechanism of Pathological Conditions of Metabolic Syndrome by in vivo Molecular Imaging

下载 (2.9 MB)

In recent years, obese adipose tissue is attracting attention as an “active metabolic organ” that causes various diseases. Especially, visceral obesity and inflammation play a central role in metabolic syndrome. It was found that visceral obesity caused remodeling of adipose tissues based on chronic inflammation, and insulin resistance was occurred, which eventually leads to development of arteriosclerosis lesion, and cause new blood vessel events.
To elucidate the molecular mechanisms of pathological conditions consisted by the complicated and multi-cellular abnormal interactions in remodeling tissues, an “in vivo molecular imaging” based on the CSU system was developed.
By using this technique, it becomes possible to precisely evaluate the three-dimensional changes in the structures in living tissue, and the multi-cellular dynamics in vivo with high time and spatial resolutions.

 

Images of the remodeling of adipose tissue in live animals

Figure 1: Images of the remodeling of adipose tissue in live animals
a: Conventional adipose tissue specimen (lean, db/+ mouse)
b & c: Images of a white adipose tissue of an 8-week-old thin mouse (lean, db/+)
d: Adipose tissue of an 8-week-old obese animal (obese, db/db)
 

 

An example of real-time multi-color movie of microcirculation in mouse

Figure 2: An example of real-time multi-color movie of microcirculation in mouse, which clearly shows dynamic movement and interactions among leucocytes, platelets, macrophages and endothelium.

 

Application of “ in vivo molecular imaging” on various organs

Figure 3: Application of “ in vivo molecular imaging” on various organs
(Blood flow images of a: Skeletal muscle, b: Liver, c & d: Kidney glomeruli)

Data: Satoshi Nishimura M.D., Ph.D www.invivoimaging.net
Dept. of Cardiovascular Medicine, Translational Systems Biology and Medicine Initiative,
The University of Tokyo & PRESTO, Japan Science and Technology Agency


Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

 

Yokogawa's Official Social Media Account List

Social Media Account List


相关产品&解决方案

  • 宽视野

    CSU-W1是横河电机对研究人员要求的“更宽视野”和“更清晰图像”的回答。

    更多
  • 高速

    CSU-X1被广泛认为是活细胞成像的强大工具,具有每秒2,000帧的成像能力。

    更多
  • 生命科学

    横河电机的高内涵分析系统和双转盘共聚焦技术提供了高速、高分辨率的活细胞成像,引导了行业的深入研究。

    更多
  • 转盘共聚焦CSU

     横河电机的共聚焦扫描单元采用专有的双转盘设计,通过实现实时活细胞成像,变革了光学显微镜。

    更多

置顶
WeChat QR Code
横河电机(中国)有限公司