[1] N. Beztsinna et al., “Quantitative analysis of receptor-mediated uptake and pro-apoptotic activity of mistletoe lectin-1 by high content imaging,” Sci. Rep., vol. 8, no. 1, p. 2768, Dec. 2018.
[2] C. Boreström et al., “A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell–derived kidney model for drug discovery,” Kidney Int., vol. 94, no. 6, pp. 1099–1110, 2018.
[3] S. T. Durant et al., “The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models,” Sci. Adv., vol. 4, no. 6, p. eaat1719, Jun. 2018.
[4] E. H. Finn et al., “Heterogeneity and Intrinsic Variation in Spatial Genome Organization,” Bioarxiv, 2017.
[5] H. Fuse et al., “Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia,” EBioMedicine, vol. 24, pp. 147–158, 2017.
[6] G. Gut, M. D. Herrmann, and L. Pelkmans, “Multiplexed protein maps link subcellular organization to cellular states,” Science (80-. )., vol. 361, no. 6401, 2018.
[7] K.-J. Jang et al., “Introducing an automated high content confocal imaging approach for Organs-on-Chips,” Lab Chip, vol. 19, no. 3, pp. 410–421, 2019.
[8] L.-S. Kontturi, J. van den Dikkenberg, A. Urtti, W. Hennink, and E. Mastrobattista, “Light-Triggered Cellular Delivery of Oligonucleotides,” Pharmaceutics, vol. 11, no. 2. p. 90, 2019.
[9] L. Marrone et al., “Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy,” Stem Cell Reports, vol. 10, no. 2, pp. 375–389, Feb. 2018.
[10] T. Misteli et al., “Effects of human sex chromosome dosage on spatial chromosome organization,” Mol. Biol. Cell, vol. 29, no. 20, pp. 2458–2469, Aug. 2018.
[11] Y. Miyake et al., “Influenza virus uses transportin 1 for vRNP debundling during cell entry,” Nat. Microbiol., 2019.
[12] L. Pelkmans, R. de Groot, J. Lüthi, H. Lindsay, and R. Holtackers, “Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR‐Cas9 gene perturbation screens,” Mol. Syst. Biol., vol. 14, no. 1, p. e8064, 2018.
[13] A. K. Rai, J. X. Chen, M. Selbach, and L. Pelkmans, “Kinase-controlled phase transition of membraneless organelles in mitosis,” Nature, vol. 559, no. 7713, pp. 211–216, 2018.
[14] R. Sachdev et al., “Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion,” Mol. Neurobiol., vol. 55, no. 11, pp. 8355–8373, 2018.
[15] H. M. Schatzl et al., “Cell-to-cell propagation of infectious cytosolic protein aggregates,” Proc. Natl. Acad. Sci., vol. 110, no. 15, pp. 5951–5956, 2013.
[16] H. Shi et al., “Folate-dactolisib conjugates for targeting tubular cells in polycystic kidneys,” J. Control. Release, vol. 293, pp. 113–125, Jan. 2019.
[17] F. Sun et al., “Mixed micellar system stabilized with saponins for oral delivery of vitamin K,” Colloids Surfaces B Biointerfaces, vol. 170, pp. 521–528, Oct. 2018.
[18] A. C. Tuck et al., “Distinctive features of lincRNA gene expression suggest widespread RNA-independent functions,” Life Sci. Alliance, vol. 1, no. 4, p. e201800124, Aug. 2018.
[19] I. Velter et al., “Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery,” Cell Chem. Biol., vol. 25, no. 5, pp. 611-618.e3, 2018.
[20] A. Verheyen et al., “Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes,” Stem Cell Reports, vol. 11, no. 2, pp. 363–379, Aug. 2018.
[21] L. Vranckx et al., “Molecular mechanism of respiratory syncytial virus fusion inhibitors,” Nat. Chem. Biol., vol. 12, no. 2, pp. 87–93, 2015.
[22] J. Wang et al., “A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins,” Cell, vol. 174, no. 3, pp. 688-699.e16, 2018.
[23] Y. Yu, B. Blokhuis, Y. Derks, S. Kumari, J. Garssen, and F. Redegeld, “Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models,” Oncoimmunology, vol. 7, no. 11, p. e1504729, Nov. 2018.
Link to article search site
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相關產品&解決方案
-
CellPathfinder高內涵影像分析系統專用軟體
CellPathfinder 是專為Yokogawa HCA 系統、CQ1 和 CellVoyager 系列而設計的軟體。 從初學者到專家,都可讓您量化細微的生理變化,使用各種圖形選項量化無標籤樣本。
-
CV8000 High-Throughput System 高內涵影像分析系統
CellVoyager CV8000 是一款高階的高內涵分析系統,使用橫河特有的高速共軛焦掃描儀。具備水鏡、多達四個高視野相機、細胞培養環境的載物台和自動化分液器的組合,不僅實現高內涵、高解析,也可以使用更複雜的評估系統進行表型篩選。
-
High Content Analysis CellVoyager
我們的高內涵分析 (HCA) 系統使用功能強大的軟體,支援從基礎科學到復雜化合物篩選的廣泛研究應用。
-
Life Science
Yokogawa 的螢光顯微影像系統和生命科學解決方案支援從基礎研究、研發藥物到臨床前試驗的應用。
Yokogawa的高內涵影像篩選系統和雙轉盤式共軛焦技術應用於再生醫學、研發藥物和精密醫學,實現高速、高辨識度的活細胞成像。