Subcellular Sampling System
The Single Cellome™ System 2000 is a system that automatically samples specific regions of cells or whole cells at the single-cell level while imaging cells in culture with a confocal microscope. Because cells in culture do not need to be detached, positional and morphological information is maintained.
Sampling features
- Automated operation.
- Precise pipetting control of location works.
- Sampling with location and morphology information.
- High resolution images and image analysis using confocal microscopy.
- Incubator function for maintaining cell activity.
Use Cases
- Intracellular components can be sampled at a single-cell level. This includes intracellular components that are difficult to sample by biochemical methods, such as organelles without lipid membranes.
- By sampling while maintaining the positional information, it is possible to sample and analyze the normal cells adjacent to the cancer cells and the normal cells located away from the cancer cells.
- Sampling is possible while maintaining morphological information. Allowing cells with different morphological changes can be sampled and compared.
- Different parts of a neuron, such as a cell body or axon, can be targeted for sampling.
- Single-cell cloning is possible from specific cells or cells with specific behavior under microscopic observation, such as transfected cells or virus-resistant cells. By combining various image analysis techniques, accurate and efficient cloning is possible.
- Multiple samples can be collected in the same well for analysis that requires a sample volume.
Details
Subcellular sampling
Unlike existing cell isolation devices, the Single Cellome™ System 2000 can not only isolate a whole-cell but also sample only the target site inside the cell. It is possible to sample cytoplasm and regions containing target organelles selectively.
After staining of HeLa cell nuclei (blue), cytoplasm (green), and mitochondria (red), a mitochondria-rich region (arrow) of the cytoplasm was sampled.
Maintaining positional and morphological information of cells
Since only the target cells can be sampled without detaching the cells in culture, it is possible to sample while maintaining positional and morphological information.
Normal MDCK cells and green fluorescent-labeled abnormal MDCK cells were co-cultured at a 50:1 ratio. A normal cell adjacent to the abnormal cell exhibiting fluorescent signals (arrows) was sampled.
High usability samples
Samples can be collected on PCR plates and microplates and collect multiple samples in the same well. Samples can also be taken while being held in the glass tip without being ejected. The collection site has a cooling function to suppress sample degradation and an incubator function to maintain the culture environment. These samples can be used for genetic analysis, mass spectrometry, and single-cell cloning.
Live Cell Imaging with Confocal Microscopy
The SS2000 utilizes live-cell imaging products developed by Yokogawa. High-speed, high-resolution 3D imaging is possible using our unique confocal microscope technology. Samples can be taken from targeted cells under a confocal microscope in an incubator environment. Time-lapse photography is also possible, allowing dynamic changes in the target cell to be captured. Since it is possible to record moving images during sampling and images before and after sampling, it is possible to compare the results of analysis of collected samples with cell imaging data.
Target cells and sampling positions can be automatically selected by image analysis. (Targets can be automatically selected as shape of cells, size of nuclei, density of organelles etc.)
Product Specifications
Automatic sampling functions | Tip diameter | 3μm, 5μm, 8μm, 10μm |
---|---|---|
Incubator loader environment | 37℃, 5%CO2, humidified | |
Collection loader environment | 37℃, 5%CO2, humidified (for culture) / 4℃ (for cooling) | |
Collection loader compatible vessels | 96-well PCR plate (0.1mL, 0.2mL) Multiwell culture plate (96well) | |
Postioning precision of sampling | XYZ axial designated resolution: 0.1μm | |
Imaging functions | Confocal scanning method | Microlens enhanced dual wide Nipkow disk confocal |
Incubator loader compatible vessels | When sampling cell: φ35mm dishes *1 Microplate (6well, 24well, 96well) |
|
When observing cell: φ35mm dishes *1 Microplate (6well, 12well, 24well, 48well, 96well, 384well, 1536well) Slideglass *2 |
||
Excitation laser wavelength | 405, 488, 561, 640nm (Uniformizer installed) | |
Emission filter | Filter size: φ25nm, Maximum slot number: 10 (Electric switching), Adjacent switching speed: 100msec | |
Transmission illumination | Bright-field, LED source | |
Objective lens | Dry lens:4x, 10x, 20x, 40x Long-working distance lens:20x, 40x Note that only the 40x dry lens can be used for cell sampling. |
|
Z focus | Electric Z motor, designated resolution:0.1μm | |
Electric stage | XYZ axial designated resolution:0.1μm | |
Autofocus | Laser autofocus | |
Camera | sCMOS camera 2,000 x 2,000pixel Pixel size:6.5 x 6.5μm | |
Other | Special purpose workstation | Workstation for sampling, measurement, analysis, 24 inch display x2 |
Measurement software | Measurement functions (2D, 3D, Time-lapse, Map imaging), Viewing measurement and sampling data, Reporting functions (Image data, Video data), Whole cell sampling, Intracellular component sampling | |
Analysis software | Analysis functions (3D, Tile, Label-free, Texture analysis, Deep Learning, Gating), 3D viewer, Graphing functions, Reporting functions(Image data, Video data, EC50, IC50, Z'-factor) | |
External dimensions, Weight | Main unit: W1,217 x D643 x H595 mm, 145kg Utility box: W275 x D432 x H298 mm, 18kg Gas mixer: W275 x D432 x H298 mm, 10kg Special purpose workstation: W172 x D471 x H414 mm, 14kg Display: W531 x D500 x H166 mm, 5.6kg |
|
Operating environment | Temperature: 15 to 30℃ Humidity: 30 to 70%RH no condensation |
|
Power consumption | Main unit, Utility box and Gas mixer: 1200VAmax Workstation: 950VAmax Display: 42VAmax x 2 |
|
Data formats (Measurement software) | Captured images : 16bit TIFF (OME-TIFF, TIFF) Output image data : TIFF, PNG, JPEG Output video data : WMV, MPEG4 |
|
Data formats (Analysis software) |
Numeric data: CSV Output image data: TIFF, PNG, JPEG Output video data: WMV, MPEG4 |
*1 A sample holder is required, and with it, up to 3 samples can be installed.
*2 A sample holder is required, and with it, up to 4 samples can be installed.
Yokogawa Life Science Official Social Media Accounts
We post our information to the following social media accounts.
Please follow us.
@Yokogawa_LS | |
Yokogawa Life Science | |
Yokogawa Life Science | |
•YouTube | Life Science Yokogawa |
Yokogawa's Official Social Media Account List
-
Benchtop CQ1 Confocal System
The CellVoyager CQ1 provides the highest quality confocal images and extended live-cell imaging in a space-saving benchtop design.
-
Minimally Invasive Intracellular Nano-Injector
Deze systeemcomponent automatiseert de penetratie en injectie van afzonderlijke cellen met behulp van een nanopipette. De lage invasiviteit maakt manipulatie van levende afzonderlijke cellen mogelijk.
-
CellPathfinder
CellPathfinder is designed for our HCA systems, CQ1 and the CellVoyager series. From beginners to experts, the analysis software lets you quantify subtle physiological changes and even label-free samples with various graph options.
Middelen
SU10 is a novel technology that enables the delivery of target substances directly into cells (nucleus or cytoplasm) using a "nano" pipette made of a glass capillary with an outer tip diameter of tens of nanometers.
Downloads
Brochures
- Single Cellome System SS2000 Catalog (13.5 MB)
Videos
The Single Cellome™ System 2000 is a system that automatically samples specific regions of cells or whole cells at the single-cell level while imaging cells in culture with a confocal microscope. Because cells in culture do not need to be detached, positional and morphological information is maintained.
Nieuws
-
Persbericht dec 1, 2021 Yokogawa ontwikkelt Single Cellome System SS2000 voor subcellulaire bemonstering
Een eencellige analyseoplossing die een revolutie teweegbrengt in de efficiëntie van onderzoek naar geneesmiddelenontdekking door de verzameling van specifieke cellen en intracellulaire componenten te automatiseren
Op zoek naar meer informatie over onze mensen, technologie en oplossingen?
Contact