New Era in Mammalian Genetics Research; Utilize the Same Embryo After Observation

下载 (3.0 MB)

In the fertilization and early embryonic development process, various events are spatiotemporally controlled, and many events are connected in the cause-effect relations toward the final goal of ontogenesis. To understand the mechanism of this process, conventional experimental techniques by fixing and destruction of the cells have limitations. If this process can be observed over time and the development process can be continued after the observation, it will open a new era in the Genetics research. A mammalian developmental biology researcher, Dr. Kazuo Yamagata, established such technique by using the CSU system.
He successfully imaged mouse embryos over a long period of time, from the post-fertilization through to the blastocyst stage, to acquire approximately 60,000 of 3D confocal images. Thereafter, the embryos were transferred to a recipient mouse, and the pups were born all normally, grew healthy, and were capable of reproduction; a firm evidence that this early embryo imaging technique does not adversely affect the process of full-term development. The high speed image acquisition and extremely low excitation light unique for the CSU system enabled greatly reduced phototoxicity and realized intensive but damage-free long time observation. Only by using this technology which does no harm on the embryonic development, it is possible to “utilize the same embryo after intensive analysis by imaging” , and thus to investigate cause- and-effect relationship of various early stage phenomena and their influence on the development.

Experimental flow
Movie example

Figure : The long-time, multi-dimensional live cell imaging on early stage embryos does not affect the process of ontogenesis.
(a) Experimental flow
(b) Movie example: Images were acquired at 7.5-minute intervals over approximately 70 hours.
      This figure shows extracted images at 2-hour intervals.
    Each image is the maximum intensity projection of a total of 51 images in the Z-axis direction.
    Green:Spindle (EGFP-α‒tubulin), Red:Nucleus (H2B-mRFP1)
 

Experimental conditions
Total time 70 hours
Interval 7.5 min/stack
Z-axis slices 51 sections (at 2μm intervals)
Channel 3(DIC, EGFP, mRFP1)
Position 6(Total 72 embryos)
Laser power(Measured at objective lens) 488nm (0.281 mW), 561nm (0.225 mW)


Data: Kazuo Yamagata, PhD., Laboratory for Genomic Reprogramming,Center for Developmental Biology, Riken


Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

 

Yokogawa's Official Social Media Account List

Social Media Account List


相关产品&解决方案

  • 宽视野

    CSU-W1是横河电机对研究人员要求的“更宽视野”和“更清晰图像”的回答。

    更多
  • 高速

    CSU-X1被广泛认为是活细胞成像的强大工具,具有每秒2,000帧的成像能力。

    更多
  • 生命科学

    横河电机的高内涵分析系统和双转盘共聚焦技术提供了高速、高分辨率的活细胞成像,引导了行业的深入研究。

    更多
  • 转盘共聚焦CSU

     横河电机的共聚焦扫描单元采用专有的双转盘设计,通过实现实时活细胞成像,变革了光学显微镜。

    更多

置顶
WeChat QR Code
横河电机(中国)有限公司