轉盤共聚焦CSU

橫河電機的CSU共聚焦單元,採用專利的雙尼普科夫(Nipkow)盤設計,是活細胞成像的理想選擇。其微透鏡提高了激發效率,可實現高速成像,同時具有較小的細胞毒性和光漂白效應。全球銷量超製4,000台,是活細胞成像領域的行業標準。
該單元可輕鬆升級,並與不同品牌的各種光學顯微鏡、相機和軟件兼容。
多模式操作既能實現超高分辨率成像,也能進行標準共聚焦成像,既能揭示隱藏的結構,又能捕捉微弱、快速的現象,助力新發現。

  • Super Resolution

    Super Resolution Confocal Scanner Unit CSU-W1 SoRa is a model that enables super-resolution live-cell imaging based on the confocal scanner unit CSU-W1.

  • 寬視野

    CSU-W1是橫河電機對研究人員要求的“更寬視野”和“更清晰圖像”的回答。

  • 高速

    CSU-X1是活細胞成像的強大工具,具有每秒2,000幀的成像能力。

Details

雙轉盤共聚焦技術

作為雙轉盤共聚焦技術的先驅,橫河電機革新了光學顯微鏡中的活細胞成像。其多光束掃描方法不僅提供高速成像,還顯著降低了光毒性和光漂白效應,使我們的共聚焦掃描單元成為活細胞成像領域事實上的標準工具。

高速、高分辨率成像

橫河電機的共聚焦掃描儀採用先進的成像技術,助力研究人員實現高速、高分辨率的活細胞成像。

  • 快速拍攝活細胞的延時共聚焦圖像
  • 降低光毒性,減少光漂白
  • 支持活細胞共聚焦熒光成像 
  • 在長期高速成像製程中保持穩定性
  • 便於對海量數據進行定量分析

CSU系列的比較

 型號 CSU-W1 CSU-X1
高端版 基礎版
成像速度
(最大幀數/秒)
200 2,000 360
掃描儀電機轉速
(rpm)
1,500-4,000 1,500-10,000
(可變)
1,800
(固定)*2
推薦的相機曝光時間 5毫秒 0.5毫秒 33毫秒
有效視場 17x16mm 10x7mm
轉盤單元 最多可選擇2個轉盤
針孔尺寸:50µm、25µm
1個轉盤
針孔尺寸:50µm
旋轉位定觸發信號 可輸出外部信號 *2
濾鏡 EX 可選
DM 可選(最多3個濾鏡) 可選
(1個濾鏡)
EM 可選
(最多10個帶濾光輪的濾鏡)
可選
(最多12個帶濾光輪的濾鏡)
可選
(1個濾鏡)
添加或更換濾鏡 用戶現場:DM組和濾鏡(EX、EM)
橫河電機工廠:DM
*1 可選

CSU與其他共聚焦系統的比較

型號 CSU 常規點掃描共聚焦 常規狹縫掃描共聚焦 其他轉盤共聚焦 落射熒光
(廣角)
掃描類型 微透鏡增強多光束掃描 單光束掃描 線掃描 磁盤掃描(多光束或狹縫)
光源 激光 汞燈或氙弧燈
探測器 CCD、EMCCD PMT 線陣CCD CCD、EMCCD
顯微鏡 靈活 特定 靈活/特定 靈活
圖像的掃描速度 2000fps ~1fps ~120fps (512X512) <200fps 任意
光漂白/光毒性
共聚焦 高(X-Y-Z共聚焦)
(y分辨率降低)

帶針孔的X-Y-Z共聚焦,狹縫掃描y分辨率降低)
圖像質量
(背景)
高、良好信噪比
(低背景光)

(需要多次平均)

(高背景光、樣本暗淡)

(高背景光)

橫河電機生命科學

我們將相關信息發布到以下社交網站上面。
請關注我們。

•X(前身)Twitter @Yokogawa_LS
•Facebook Yokogawa Life Science
•LinkedIn Yokogawa Life Science
•YouTube Life Science Yokogawa

 

橫河電機官方社交媒體清單

社交媒體清單

用戶實驗室

  • 北卡羅來納大學教堂山分校生物系Ted Salmon實驗室
  • 美國國家心肺血液研究所(貝塞斯達校區)細胞和組織形態動力學實驗室(LCTM)Waterman-Storer實驗室
  • 哈佛醫學院系統生物學系Tim Mitchison實驗室
  • 加州大學戴維斯分校細胞與計算生物學系Scholey實驗室
  • 加州大學舊金山分校細胞和分子藥理學系Vale實驗室
  • 馬薩諸塞大學阿默斯特分校生物系Wadsworth實驗室
  • 杜克大學生物學系Kiehart實驗室
  • 猶他大學醫學院HSC設施
  • 印第安納大學醫學中心印第安納生物顯微鏡中心
  • 杜克大學神經生物學系Ehlers實驗室
  • 北卡羅來納大學教堂山分校Bob Goldstein實驗室
  • 弗裏德裏希·米歇爾生物醫學研究所的Andrew Matus實驗室
  • 日本東北大學生命科學研究生院發展動力學實驗室
  • 加州大學舊金山分校解剖學Zena Werb實驗室
  • 東京大學心血管醫學系Satoshi Nishimura實驗室
  • 東京大學跨學科信息研究研究生院大島實驗室
  • 加州大學戴維斯分校Huser研究小組
  • 東京大學科學研究生院中野實驗室

有用的網站

1) 互聯網上的顯微鏡學和成像資源

顯微鏡學和成像各方面的完整列表,作者Douglas W. Cromey,來自亞利桑那大學藥學院西南環境健康科學中心細胞成像部門

 

2) “Severo Ochoa”分子生物學中心(CBMSO)

包含一般信息、顯微鏡學實驗室、出版物、課程和會議、社團、圖像的鏈接,尤其有助於尋找顯微鏡學研討會。

 

3) 細胞成像設備,是猶他大學健康科學中心研究設備部門的一部分

Chris Rodesch很好地解釋了CSU磁盤掃描共聚焦系統

 

4) 分子表達網站

由佛羅裏達州立大學國家高磁場實驗室運營。
網絡上的光學顯微鏡圖像集合,以及多種類型顯微鏡學的信息。
由尼康(Nikon MicroscopyU)和奧林巴斯(Olympus Microscopy Resource Center)讚助的交互式Java教程不僅對學習共聚焦顯微鏡有用,而且對學習各種其他顯微鏡和相關技術也有幫助。

 

生命科學教材

Microscopy Techniques, Advances in Biochemical Engineering/Biotechnology Vol.95
系列編輯 T. Scheper, 卷編輯 J. Rietdorf, Springer(2005)
ISBN-10 3-540-23698-8

Confocal Microscopy for Biologists
Edited by Alan R.Hibbs,Kluwer Academic / Plenum Publishers(2004)
ISBN:0-306-48468-4(硬殼本) 0-306-48565-6(電子書)

Live Cell Imaging, A Laboratory Manual
編輯:Robert D. Goldman & David L. Spector. 第2版,Cold Spring Harbor Laboratory Press (2010)
ISBN:0-87969-893-4(平裝本), ISBN 0-87969-892-6 (硬殼本)

Handbook of Biological Confocal Microscopy, 第3版
編輯:James B. Pawley, Springer(2006)

VideoMicroscopy, The Fundamentals
Shinya Inoue, Kenneth Spring, 第2版, Plenum Press. 紐約 (1997)

ISBN: 0-306-45531-5

Direct-View High-Speed Confocal Scanner: The CSU-10, Chapter 2: Cell Biological Applications of Confocal Microscopy (Methods in Cell Biology)
Shinya Inoue和Ted Inoue
編輯:Brian Matsumoto,Academic Press
ISBN:0-12-580445-8 ; 第2版 (2002/12)

文章:CSU技術及其應用

Quantification and clustering of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells.
Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S
已交稿
Current Application and Technology of Functional Multineuron Calcium Imaging.
Shigehiro Namiki,Yuji Ikegaya
Biological and Pharmaceutical Bulletin 第32卷 (2009),第11期
Live imaging of yeast Golgi cisternal maturation.
Kumi Matsuura-Tokita, Masaki Takeuchi, Akira Ichihara, Kenta Mikuriya, Akihiko Nakano
Nature 441, 1007-1010 (2006年6月22日)
Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems.
E. Wang, C. M. Babbey & K. W. Dunn
Journal of Microscopy, 第218卷,2005 年 5 月 2 日,148-159頁
Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source.
D.M.Grant, D.S. Elson, D.Schimpf, C.Dunsby, J.Requejo-Isidro, E.Auksorius, I.Munro, M.A. A. Neil, P. M. W. French ,E. Nye G. Stamp, P.Courtney
Optics Letters 第30卷,第24期 (2005 ) 3353
Optimization of Spinning Disk Confocal Microscopy: Synchronization with the Ultra-Sensitive EMCCD.
F.K.Chong, C.G.Coates, D.J.Denvir, N.McHale, K.Thornbury & M.Hollywood
Proceedings of SPIE 2004
Spinning disk confocal microscope system for rapid high-resolution, multimode, fluorescence speckle microscopy and green fluorescent protein imaging in living cells.
Maddox PS, Moree B, Canman JC, Salmon ED
Methods Enzymol. 360:597-617 (2003)
A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells.
Adams, M.C., Salmon, W.C., Gupton, S.L., Cohan, C.S., Wittmann, T., Prigozhina, N. & Waterman-Storer, C.M
Methods, 29, 29-41 (2003)
Spinning-disk confocal microscopy ? a cutting-edge tool for imaging of membrane traffic.
Nakano, A.
Cell Structure Function, 27, 349-355.(2002)
High Speed 1-frame/ms scanning confocal microscope with a miclolens and Nipkow disks.
T.Tanaami, S.Otsuki,N.Tomosada, Y.Kosugi. M.Shimizu & H.Ishida
Applied Optics, 第41卷,第22期(2002)
New imaging modes for lenslet-array tandem scanning microscopes.
T. F. Watson, R. Juskaitis & T. Wilson
Journal of Microscopy, 第205卷,2月2日(2002) 209-212
High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3-D imaging of single fluorescence molecule in real time.
A.Ichihara, T.Tanaami, K.Isozaki, Y.Sugiyama, Y.Kosugi, K.Mikuriya, M.Abe and I.Uemura
Bioimages 4, 57-62(1996)

文章: 細胞生物學

(囊泡運輸、肌動蛋白動力學、微管動力學、細胞分裂)

Long-term, Six-dimensional Live-cell Imaging for the Mouse Preimplantation Embryo That Does Not Affect Full-term Development.
Yamagata, K., Suetsugu, R. and Wakayama, T., J. Reprod. Dev., 55: 328-331(2009) 
The Caenorhabditis elegans DDX-23, a homolog of yeast splicing factor PRP28, is required for the sperm-oocyte switch and differentiation of various cell types.
Konishi, T., Uodome, N., and Sugimoto, A.,Developmental Dynamics 237, 2367-2377(2008)
Determining the position of the cell division plane.
J. C. Canman, L. A. Cameron, P.S. Maddox, A. Straight, J, S. Tirnauer, T. J. Mitchison, G. Fang., T. M. Kapoor & E. D. Salmon, Nature 424, 1074-1078 (2003年8月28日) “Cover”
Taxol-stabilized Microtubules Can Position the Cytokinetic Furrow in Mammalian Cells.
Katie B. Shannon, Julie C. Canman,C. Ben Moree,Jennifer S. Tirnauer, E. D. Salmon, Mol Biol Cell. 9月; 16(9): 4423-4436 (2005)
Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase.
G. C. Rogers, S. L. Rogers, T. A. Schwimmer,S. C. Ems-McClung, .C E. Walczak, R. D. Vale, J. M. Scholey & D. J. Sharp, Nature 427(6972):, 364-370 (2004)
Crm1 is a Mitotic Effector of Ran-GTP in Somatic Cells
Arnaoutov, A., Azuma, Y., Ribbeck, K., Joseph, J., Boyarchuk, Y. and Dasso, M, Nat Cell Biol. 6月;7(6):626-32 (2005).
Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae.
J.N. Molk, E.D. Salmon, and K. Bloom, JCB, 第172卷,第1期, 27-39 (2006)
Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase
Nasser M. Rusan and Patricia Wadsworth ,JCB 168 (1) 21-28 (2005)
The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line.
G. Goshima and R.D. Vale,JCB 162(6) 1003-1016 (2003)
Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables.
Hwang, E., Kusch, J., Barral, Y. & Huffaker, T.C, J. Cell Biol. 161, 483-488 (2003)
Cell migration without a lamellipodium : translation of actin dynamics into cell movement mediated by tropomyosin
S.L. Gupton, K.L. Anderson, T. P. Kole, R.S. Fischer, A. Ponti, S.E. Hitchcock-DeGregori, G. Danuser, V.M. Fowler, D.Wirtz, D. Hanein, and C.M. Waterman-Storer ,JCB 168(4) 619-631(2005)
Actin dynamics in the contractile ring during cytokinesis in fission yeast.
Pelham, R.J. & Chang, F, Nature, 419, 82-86. (2002)
CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity.
Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Sugiura S,Yoshimura K, Kadowaki T, Nagai R, Nature Medicine 8, 914- 920 (2009年8月15日)
T-cell engagement of dendritic cells rapidly rearranges MHC class II transport.
M. Boes, J. Cerny, R. Masso, M. Op den Brouw, T. Kirchhausen, J. Chenk & H. L. Ploegh, Nature 418, 983- 988 (2002年8月29日) “Cover”
Functional coordination of intraflagellar transport motors.
G. Ou, O.E. Blacque, J.J.Snow, M.R. Leroux & J.M. Scholey,Nature 436(7050):583-7. (2005).
Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells
Kreitzer, G., Schmoranzer, J., Low, S.H., Li, X., Gan, Y., Weimbs, T., Simon, S.M. & Rodriguez-Boulan, E, Nature Cell Biol. 5, 126-136. (2003)
Dynamics of Membrane Clathrin-Coated Structures During Cytokinesis.
James H. & Wang, Yu-Li Warner, Anne K., Keen, Traffic 7 (2), 205-215. (2006 ) 

文章:神經科學

Activity-induced targeting of profilin and stabilization of dendritic spine morphology.
Ackermann, M., and A. Matus, Nat Neurosci. 11月;6(11):1194-200 (2003)
Dynamics and Regulation of Clathrin Coats at Specialized Endocytic Zones of Dendrites and Spines.
T.A. Blanpied, D.B. Scott, M.D. Ehlers, Neuron,  第36卷, 435-449, 10月24日(2002)
Neurabin/Protein Phosphatase-1 Complex Regulates Dendritic Spine Morphogenesis and Maturation.
R.T.Terry-Lorenzo, D.W. Roadcap, T. Otsuka , T.A. Blanpied, P.L. Zamorano, C.C. Garner, S. Shenolikar, and M.D. Ehlers, MBC, 第16卷,第5期, 2349-2362, 5月 (2005)
Phosphatidylinositol phosphate kinase type I regulates dynamics of large dense-core vesicle fusion.
L.W..Gong , G. D.Paolo, E. Diaz ., G.Cestra , M-E. Diaz, M. Lindau , P.De Camilli , and D. Toomre , PNAS, 第102卷,第14期, 5204-5209 (2005)

鈣動力學

Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes.
Ishida, H., Genka, C., Hirota, Y., Nakazawa, H. & Barry, W.H, Biophys. J. 77, 2114-2122 (1999)
Simultaneous imaging of phosphatidyl inositol metabolism and Ca2+ levels in PC12h cells.
Morita,M,Yoshiki, F,and ,Kudo,Y, BBRC 308, 673-678 (2003)
Calcium oscillations in interstitial cells of the rabbit urethra.
Johnston, L., Sergeant, G. P., Hollywood, M. A., Thornbury, K. D. & McHale, N. G,The Journal of Physiology 565 (2), 449-461 (2005).

微血管血流

Real-time observation of hemodynamic changes in glomerular aneurysms induced by anti-Thy-1 antibody.
Oyanagi-Tanaka, Y., Yao, J., Wada, Y., Morioka, T., Suzuki, Y., Gejyo, F., Arakawa, M. & Oite, T, Kidney Int. 59, 252-259. (2001)
Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse.
Shahrokh Falati, Prter Gross, Glenn Merrill-Skoloff, Barbara C. Furie & Bruce Furie, Nat Med 8 (10) 1175-1180(2002)

其他應用

Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage
Hiroko P. Indo,Mercy Davidson,Hsiu-Chuan Yen,Shigeaki Suenaga,Kazuo Tomita,Takeshi Nishii,Masahiro Higuchi,Yasutoshi Koga,Toshihiko Ozawa,Hideyuki J. Majima,Mitochondrion No.7 106-118(2007)

參考

摘要:

Discovering the Basic Principles of Life through the Live Imaging of C. elegans

摘要:

Visualizing the cell behavioral basis of epithelial morphogenesis and epithelial cancer progression

摘要:

Spinning Disk Confocal Microscopy for Quantitative Imaging and Multi-Point Fluorescence Fluctuation Spectroscopy.

摘要:

Wide and Clear
Confocal Scanner Unit

摘要:

Comparison between CSU and conventional LSM in 4D movies.

摘要:

To investigate interactive dynamics of the intracellular structures and organelles in the stomatal movement through live imaging technique, a CSU system was used to capture 3-dimensional images (XYZN) and time-laps images (XYT) of guard cells.

摘要:

Faster, Brighter, and More Versatile Confocal Scanner Unit

橫河技報
The World as Seen from Cells
(rd-te-r06002-001)
2.2 MB
摘要:

List of Selected Publications : CSU-X1

摘要:

List of Selected Publications : CSU-W1

下載

影片

摘要:

YOKOGAWA proprietary Spinning Disk technology enables fast real-time confocal imaging for applications such as high-speed 3D and long-term live cell imaging. These quantifiable imaging analysis are essential tools for modern precision drug discovery.
 

想了解更多技術&解決方案嗎?

聯絡我們

定頂