Yokogawa's Exapilot Introduced to Maximize Operational Efficiency at an Experimental Refining Facility

Idemitsu Kosan logo
下载 (475.8 KB)

Executive Summary

Idemitsu Kosan, Chiba, Japan
Idemitsu Kosan, Japan

Idemitsu Kosan Co., Ltd. (Idemitsu) is a leading producer and distributor of oil, lubricants, and petrochemical products, and is also engaged in the research and development of functional and electronic materials as well as agricultural biochemicals. At the company's Technology & Engineering Center, technical experts are carrying out research in the refining and petrochemical fields, focusing on topics related to development, design, construction, operation, quality control, maintenance, and systems.

They provide technical supports that ensure safe and stable operations and enhance the competitiveness of processes. They also assist in the development of processes for manufacturing new functional chemicals and in licensing for the export of process and catalyst technologies.

At this center's bench plant, Idemitsu is using Yokogawa's Exapilot operation efficiency improvement package in experiments involving catalysts that are used in refinery hydrogenation and hydrocracking units which play important roles in determining the qualities of the refined products. To optimize such a catalytic reaction, candidate catalysts are evaluated in the bench plant under various temperatures and pressure levels.

Idemitsu has been using the Yokogawa CENTUM distributed control system at this bench plant. On the other hand, they are also already familiar with the benefits of Exapilot used elsewhere in their organization. To improve operations and achieve the same benefits at this very complex bench plant facility, they decided to introduce Exapilot here as well.

One of the bench plant units
One of the bench plant units

The Challenges and the Solutions

Idemitsu's bench plant carries out more than 100 experiments each year. The operational settings differ for each test, determining how the plant's individual reactor units must be started up and shut down. The equipment used throughout the plant also varies depending on when it was installed. To prevent operator errors, it was essential to standardize operating procedures. To accomplish this, Exapilot was first introduced for use with the bench plant's main systems, then its use was broadened to other of this plant's functions. Specific advantages of the Exapilot system are as follows:

1. Dissemination of operator know-how
The bench plant startup and shutdown procedures for these experiments are complex, and they must be carried out repeatedly, placing great demands on the operators. The Exapilot system draws on the expertise of experienced personnel to provide cues that navigate operators step by step through each procedure.

2. Standardization of operations
Thanks to the use of Exapilot to set temperature gradients and alarm thresholds, the operation of the units throughout this plant is smoother and more uniform, resulting in improved safety.

3. Maintenance efficiency
Flowcharts created with Exapilot facilitate a greater understanding of the operation procedures. Idemitsu anticipates that this will allow its more junior personnel to operate this plant more effectively.

4. Labor-saving
Each experiment requires different parameter settings. Before the introduction of Exapilot, operators needed to manually enter data based on the information specified in a hard copy experiment plan submitted by the department that was requesting the experiment. Now operators receive an Excel document that can be used to automatically enter the data to the DCS in a single operation, and the operators only need to confirm the parameter settings. Excel reports can also be sent back to the requesting department, speeding up the overall process and ensuring greater accuracy.

A standard operating procedure flowchart created by Exapilot

A standard operating procedure flowchart created by Exapilot

Future Plan

Based on the results achieved so far, Idemitsu expects that it will be able to achieve a 2,000 hour reduction in work hours by introducing Exapilot throughout this experimental facility. And to make more effective use of assets such as process gas chromatographs that are shared by more than one unit, the plan is to import the test schedule to Exapilot and automatically reflect this in the operating plan.

Customer Satisfaction

Our feedback from Idemitsu indicates that they have found Exapilot to be an effective tool in improving work efficiency. They appreciate the ability to create a flowchart that guides them in streamlining and optimizing an operation. They would like to see Exapilot enter wide use so that their operators can accumulate know-how and solve operational issues on their own. While still evaluating the use of Exapilot at their experimental facility, they do recognize that it has had the desired effect, and would like to extend the scope of its application and obtain further benefits.

Kunio Furuuchi and Kazushige Chiba of the Idemitsu Technology & Engineering Center
Kunio Furuuchi and Kazushige Chiba of the
Idemitsu Technology & Engineering Center

 

相关行业

  • 油气下游

    近年来,石油天然气下游行业正面临日益增多的挑战。这些挑战包括:需处理的原料特性不断变化、工艺设施与设备逐渐老化、能源成本持续攀升、能够安全高效运营炼油厂的熟练操作人员紧缺,以及市场和客户需求的快速变化。

    多年来,横河电机与众多下游企业携手合作,提供专注于解决这些挑战与难题的工业解决方案。横河电机的 VigilantPlant解决方案助力工厂业主实现工厂内的更大盈利和可持续安全运营。

  • 炼油

    在不断变化的市场环境中,炼油厂不仅被视为原油加工单元,更是利润中心。与此同时,业界对这些设施的安全需求保持着高度重视。要实现长期盈利、效率提升与环境保护的目标,需要一套涵盖规划、调度、管理与控制的完整生产解决方案。凭借在自动化领域多年的专业积淀,横河电机能够为您提供高性价比的整体解决方案,助力提升运营效能,共创更清洁的世界。

相关产品&解决方案

  • 程序自动化(Exapilot)

    程序自动化工具(Exapilot)在满足可靠性、灵活性和生命周期成本方面要求的同时,提供灵活的方法来获取、优化和维持过程工厂中的流程知识。

  • 集散控制系统(DCS)

    横河电机的集散控制系统(DCS) 可实现工业过程的自动化和控制,并提高业务绩效。30,000多套系统的经营者选择采用横河电机的DCS来实现其生产目标。


置顶
WeChat QR Code
横河电机(中国)有限公司