Introduction
![]() |
| Fig.1: Low Flow Cut-off |
One of the most common applications for differential pressure transmitters is flow measurement. A differential pressure transmitter can be placed across many types of primary flow elements like orifice plates, pitot or venturi tubes to measure flow. Primary flow elements create a pressure drop (square root proportional to flow).
Flow proportional output signals from a differential pressure transmitter are possible through integral square root extraction. The square root function of differential pressure has extremely high gain at low flow rates leading to large output changes representing low changes in flow rate at the bottom end of the measurement range. Output signals can become erratic at low flow rates due to high gain. Host control systems can experience difficulty controlling flow rate based on a highly fluctuating input signal from the square root extracted differential pressure. DPharp differential pressure transmitters have some unique signal conditioning features to eliminate instability at low flow rates.
Application
Flow rates above 20% of maximum flow produce a large square root extracted differential pressure signal for a given change in flow rate. Flow rates around 5% of maximum flow produce a small square root extracted differential pressure signal for a given change in flow rate (See Fig.1). High gain in the low flow rate operating area amplifies any inherent noise or changes in flow rate leading to pressure transmitter output instability.
Solution
![]() |
| Fig.2 |
![]() |
| Fig.3 |
DPharp has a software capability to stabilize output signals at the low end of a flow measurement range minimizing erratic output signals. An integral low cut mode features a user programmable transmitter output and set point to change the output to a linearto- pressure (Linear) or zero (Zero) status. The flow rate set point at which an output transition occurs is programmable from 0 to 20% of full scale flow. Fig.2 shows Linear and Zero output modes set at 5 % low cut mode.
Hysteresis is incorporated into the low cut mode such that when the actual flow rate is equal to the low cut set point that output oscillation will not occur. Hysteresis is fixed at a nominal 1% of full scale flow. Fig.3 details how the hysteresis affects the pressure transmitter output.
Main Features of DPharp
![]() |
| DPharp |
EJA110A Digital Solution
- Best-in-class performance
- ±0.03% Overpressure calibration protection
- ±0.1% per 5 years long term stability
- 100:1 turndown
- ±0.065% accuracy
EJX110A Premium Value
- ±0.1% per 10 years long term stability
- 200:1 turndown
- Best-in-class high accuracy, 0.04%
- Multi-sensing output
- Multi-variable transmitter as EJX family line-up
- Safety as standard (IEC 61508)
相关行业
-
电力
20世纪70年代中期,横河电机通过推出EBS电气控制系统进入了电力业务领域。自此以后,横河电机坚定不移地持续开发其技术和能力,旨在为全球客户提供更优的服务和解决方案。
-
石油和天然气
横河电机在石油天然气行业的各个环节均拥有丰富经验,业务覆盖海上与陆上设施、管道运输、终端处理及深水作业等领域。我们提供的解决方案能够提升安全水平、确保设备准确可靠地运行,并有效提高工厂运营效率。
-
油气下游
近年来,石油天然气下游行业正面临日益增多的挑战。这些挑战包括:需处理的原料特性不断变化、工艺设施与设备逐渐老化、能源成本持续攀升、能够安全高效运营炼油厂的熟练操作人员紧缺,以及市场和客户需求的快速变化。
多年来,横河电机与众多下游企业携手合作,提供专注于解决这些挑战与难题的工业解决方案。横河电机的 VigilantPlant解决方案助力工厂业主实现工厂内的更大盈利和可持续安全运营。
-
火电
使用煤、石油或天然气作为燃料的火力发电占发电量的大部分。
-
管道
恰当的管道控制与仪表系统能显著提升性能与盈利能力。横河电机拥有专用技术,可优化管道解决方案中各组件的性能,包括压缩机、泵、阀门以及中间存储与分配设施。
-
海上设施(FPSO、FLNG与FSRU)
海上勘探与生产需要在严苛环境下实现更长运行时间。有人与无人设施需配备具备先进远程监控功能的可靠集成控制与安全系统(ICSS)。横河电机拥有先进技术及执行各种规模与复杂程度海上项目的丰富经验。
-
上游
上游行业涵盖海上和陆上作业,包括井口自动化、分馏、完井和分离等环节,旨在开采并初步处理地下或水下原油与天然气。
石油被采至地表后,必须在运输前进行分离。通常在初级和二级分离阶段,通过三相分离将气流、水流和油流分开。气体输送需要管道,并可在上游阶段加入分馏处理。液体则存入储罐或通过管道输送至加工环节,此过程需准确的液位测量。



