List of Selected Publications : CQ1

다운로드 (129 KB)

[1] D. W. Cleveland et al., “TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC,” Nat. Commun., vol. 9, no. 1, p. 4354, 2018.

[2] F. Gasset-Rosa et al., “Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death,” Neuron, Mar. 2019.

[3] T. Hoshiba et al., “Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2-Methoxyethyl Acrylate) Analogous Polymers,” Macromol. Biosci., vol. 17, no. 12, p. 1700297, Jun. 2017.

[4] J. Hwang et al., “Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells,” ACS Appl. Mater. Interfaces, vol. 10, no. 21, pp. 17685–17692, 2018.

[5] V. G. Kartzev et al., “Discovery and optimization of cardenolides inhibiting HSF1 activation in human colon HCT-116 cancer cells,” Oncotarget, vol. 9, no. 43, 2018.

[6] D. H. Kim et al., “The AAA+ ATPase TRIP13 remodels HORMA domains through N‐terminal engagement and unfolding,” EMBO J., vol. 36, no. 16, pp. 2419–2434, 2017.

[7] S. W. Kim et al., “Mutual Destruction of Deep Lung Tumor Tissues by Nanodrug-Conjugated Stealth Mesenchymal Stem Cells,” Adv. Sci., vol. 5, no. 5, p. 1700860, Jun. 2018.

[8] T. Kimura et al., “Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation,” Autophagy , vol. 13, no. 10, pp. 1629–1647, 2017.

[9] H. Komura et al., “Alzheimer Aβ Assemblies Accumulate in Excitatory Neurons upon Proteasome Inhibition and Kill Nearby NAKα3 Neurons by Secretion,” iScience, 2019.

[10] Y. S. Lee and H. S. Jun, “Glucagon-like peptide-1 receptor agonist and glucagon increase glucose-stimulated insulin secretion in beta cells via distinct adenylyl cyclases,” Int. J. Med. Sci., vol. 15, no. 6, pp. 603–609, 2018.

[11] F. Louis, S. Kitano, J. F. Mano, and M. Matsusaki, “3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures,” Acta Biomater., vol. 84, pp. 194–207, Jan. 2019.

[12] F. Meitinger et al., “53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration,” J. Cell Biol., vol. 214, no. 2, pp. 155–166, 2016.

[13] M. H. Mosa et al., “Dynamic Formation of Microvillus Inclusions During Enterocyte Differentiation in Munc18-2–Deficient Intestinal Organoids,” Cmgh, vol. 6, no. 4, pp. 477-493.e1, Aug. 2018.

[14] K. Nanki et al., “Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis,” Cell, vol. 174, no. 4, pp. 856-869.e17, Aug. 2018.

[15] S. Santaguida et al., “Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System,” Dev. Cell, vol. 41, no. 6, pp. 638-651.e5, 2017.

[16] H. Seo et al., “A β1-tubulin–based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production,” Blood Adv., vol. 2, no. 17, pp. 2262–2272, Sep. 2018.

[17] Y. Shimada et al., “FF-10502, an Antimetabolite with Novel Activity on Dormant Cells, Is Superior to Gemcitabine for Targeting Pancreatic Cancer Cells,” J. Pharmacol. Exp. Ther., vol. 366, no. 1, pp. 125–135, 2018.

[18] N. Sunamura, S. Iwashita, K. Enomoto, T. Kadoshima, and F. Isono, “Loss of the fragile X mental retardation protein causes aberrant differentiation in human neural progenitor cells,” Sci. Rep., vol. 8, no. 1, p. 11585, Dec. 2018.

[19] M. Tanaka et al., “Adhesion-based simple capture and recovery of circulating tumor cells using a blood-compatible and thermo-responsive polymer-coated substrate,” RSC Adv., vol. 6, no. 92, pp. 89103–89112, 2016.

[20] C. Zhang et al., “Mimicking Pathogenic Invasion with the Complexes of Au22(SG)18-Engineered Assemblies and Folic Acid,” ACS Nano, vol. 12, no. 5, pp. 4408–4418, 2018.

Link to article search site

Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

Yokogawa's Official Social Media Account List

Social Media Account List

Related Products & Solutions

  • Benchtop System

    CQ1은 공간을 절약하는 벤치탑 설계에서 최고 품질의 공초점 이미지와 확장된 라이브 셀 이미지 기능을 제공합니다.

    See More
  • High Content Analysis CellVoyager

    HCA(High-Content Analysis) 시스템은 당사의 강력한 소프트웨어와 함께 활용되어 기초 과학에서부터 복잡한 화합물 스크리닝에 이르기까지 광범위한 연구 응용 분야에서 활용됩니다. 

    See More
  • Life Science

    Yokogawa의 고밀도 분석시스템과 이중 회전 디스크 공초점 기술은 고속 및 고해상도 라이브 셀 이미징을 제공하여 전세계 최첨단 연구를 가능하게 합니다.

    See More