Smart Level Setup Feature

Introduction

Level transmitter configuration can be very time consuming. Calculations required to determine proper range values for traditional transmitters can become complex due to the physical layout of an application.

DPharp transmitters with advanced software functionality eliminate this time consuming task. With maintenance shops getting smaller, finding equipment that allows us to do more with less becomes a priority.

Smart level setup feature fig.1

Application

Using typical smart or conventional products all of the following must be considered:

  1. The specific gravity (SG) of the process;
  2. Precise location of 0% and 100%;
  3. Specific gravity of the capillary fill fluid or sealing liquid (for impulse tubing);
  4. Vertical height of capillary or impulse piping;
  5. Exact orientation of the transmitter to the vessel;
  6. Vertical distance between the flanges.

Depending on the application, the vessel may be open (referencing atmosphere), or closed (under some blanket pressure).

Elevation is typically used when the vessel is closed. To reference blanket pressures, a low side wet leg or remote seal must be used. The low side pressure creates a negative force on the transmitter equal to the vertical height times the specific gravity of the fill fluid.

Suppression is positive pressure created on the high side of the transmitter typically due to a zero point above the transmitter. It is normally employed in an open vessel referencing atmosphere. This is a positive pressure equal to the vertical distance between the 0% point and the transmitter times the specific gravity of the liquid.

Elevation/suppression distance almost never agrees with the piping and instrumentation diagram (P&ID) because actual piping (or remote seal capillaries) do not form exacting angles in the field. In most cases, the precise vertical height is not known until the unit is installed.

Span is the vertical distance of the process times the specific gravity: Figure 1. 10.5 * 0.9 = 9.45 mH2O (31.5 inH2O).

Calibration range is the calculated 0 and 100% taking into consideration positive and negative pressures. In figure 1, the following applies:

Smart level setup feature fig.2

Figure 1

0 % = H - L
= ( 4.5 x 0.8 ) - ( 15 x 0.8 )
= 3.6 - 12
= -8.4 mH2O ( -28 inH2O )

100 % = H - L
= ( 4.5 x 0.8 ) + ( 10.5 x 0.9 ) - ( 15 x 0.8 )
= 3.6 + 9.45 - 12
= 1.05 mH2O ( 3.5 inH2O )

The calibration range is: -8.4 to 1.05 mH2O ( -28 to 3.5 inH2O )

Note: SG stands for specific gravity.

The information required to perform the calculation is not readily available. It exists in vendors instruction manuals, P&ID's, but not until the unit is actually installed will all the variables be known because the process piping and capillaries do not form exacting angles in the field.

 

Solution

DPharp has a smart level setup feature that eliminates the need for elevation/suppression calculations, making set up quick and painless.

Calibration is accomplished by simply following these four steps (for Brain):

  1. Span the transmitter to the process, height * specific gravity of 0 to 9.45 mH2O (0 to 31.5 inH2O) using the BT200 in C21: LRV and C22: HRV.
  2. Install to the process using either capillaries or impulse tubing.
  3. Bring the process to a zero (4mA) condition.
  4. Through the BT200 execute H10: Auto LRV in the H: AUTO SET menu.

DPharp will calculate the total elevation/suppression and automatically setup the device for that installation. It will even correct the values in software at C21: LRV -28 and C22: HRV 3.5 so the customer can print and record the actual configuration for their maintenance documents.

But what if I cannot bring my process to zero? I have installed the unit, fluid is now in the tank, and the output of the transmitter does not agree with my sight glass. What do I do?

Most transmitters can only make adjustments at 0% or 100%. DPharp can make adjustments anywhere with full elevation or suppression. Once the transmitter is programmed with the correct span, all that is needed is a known point in the process (usually provided by the sight glass.) The output can be adjusted in one of two ways.

  1. Simply adjust the encoder on the DPharp until the output reaches the known point. In figure 1, the output would be adjusted to 60%.
  2. The correct value can be entered into J10: Zero Adj. In the case of this example, the proper output value of 60% would be entered. The amount of deviation can be viewed in J11: Zero Dev.

DPharp's digital sensing technology makes this possible. With analog sensing technologies (like capacitance sensors), range changes often necessitate a re-calibration or a trimming of the A/D converter to achieve specified performance. The digital DPharp sensor has no A/D converter, no trimming is necessary. The new range is guaranteed to perform within specification.

 

Notes

  1. In level measurement, it is important to maintain a consistent reference pressure. On a closed tank system, this is most efficiently achieved by the use of remote seals and capillary systems.
  2. It is important to note that the span is to be calculated on process height x specific gravity of the process fluid, and will not necessarily agree with the physical height.
  3. Output will be linear to the level, regardless of fluid or blanketing system.
  4. Use of remote seals eliminates problems such as condensation in impulse piping, the requirement for maintenance of condensate pots and fill fluid leaking into the process.

 

Main Features of DPharp

EJA110E Digital Solution

  • ±0.03% Overpressure calibration protection
  • ±0.1% per 10years long term stability
  • 100:1 turndown
  • ±0.055% accuracy
  • SIL2 standard

EJX110A Premium Value

  • ±0.1% per 15years long term stability
  • 200:1 turndown
  • Best-in-class high accuracy, 0.04%
  • Multi-sensing output
  • Multi-variable transmitter as EJX family line-up
  • SIL2 standard
Smart level setup feature fig.3 EJX110A Differential Pressure Transmitters

Looking for more information on our people, technology and solutions?

Contact Us

์—…์ข…

  • ์˜ค์ผ ๋ฐ ๊ฐ€์Šค

    Yokogawa๋Š” ํ•ด์ƒ ๋ฐ ์œก์ƒ ์‹œ์„ค์—์„œ ํŒŒ์ดํ”„๋ผ์ธ, ํ„ฐ๋ฏธ๋„ ๋ฐ ์‹ฌํ•ด ์šด์ „์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์„์œ  ๋ฐ ๊ฐ€์Šค ์‚ฌ์—…์˜ ๋ชจ๋“  ๋ถ€๋ถ„์—์„œ ํ’๋ถ€ํ•œ ๊ฒฝํ—˜์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์•ˆ์ „์„ ๊ฐ•ํ™”ํ•˜๊ณ  ์ •ํ™•ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์šด์ „์„ ๋ณด์žฅํ•˜๋ฉฐ ํ”Œ๋žœํŠธ ํšจ์œจ์„ ๋†’์ด๋Š” ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

    See More
  • ์˜ค์ผ ๋ฐ ๊ฐ€์Šค๊ด€๋ จ ๋‹ค์šด์ŠคํŠธ๋ฆผ

    ์„์œ  ๋ฐ ๊ฐ€์Šค ์‚ฐ์—…์€ ์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ์–ด๋ ค์›€์ด ์ปค์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ์ฒ˜๋ฆฌํ•  ์›๋ฃŒ์˜ ๋ณ€ํ™”ํ•˜๋Š” ํŠน์„ฑ, ๊ณต์ • ์„ค๋น„ ๋ฐ ์žฅ๋น„์˜ ๊ณ ๋ นํ™”, ์—๋„ˆ์ง€ ๋น„์šฉ์˜ ์ƒ์Šน, ์ •์œ  ๊ณต์žฅ์„ ์•ˆ์ „ํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ™๋ จ ๋œ ํ”Œ๋žœํŠธ ์šด์˜์ž์˜ ๋ถ€์กฑ, ๊ทธ๋ฆฌ๊ณ  ์‹œ์žฅ๊ณผ ์‹œ์žฅ์˜ ๋Š์ž„์—†์ด ๋ณ€ํ™”ํ•˜๋Š” ์š”๊ตฌ ์‚ฌํ•ญ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.

    ์ง€๋‚œ ์ˆ˜๋…„๊ฐ„ Yokogawa์™€๋Š” ๋งŽ์€ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋Š” ์‚ฐ์—… ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ๋‹ค์šด์ŠคํŠธ๋ฆผ ํšŒ์‚ฌ์™€ ํŒŒํŠธ๋„ˆ ๊ด€๊ณ„๋ฅผ ๋งบ์–ด ์™”์Šต๋‹ˆ๋‹ค. Yokogawa์˜ VigilantPlant ์†”๋ฃจ์…˜์€ ํ”Œ๋žœํŠธ ์†Œ์œ ์ž๊ฐ€ ํ”Œ๋žœํŠธ ๋‚ด์—์„œ ์ตœ๋Œ€ํ•œ์˜ ์ˆ˜์ต์„ฑ๊ณผ ์ง€์† ๊ฐ€๋Šฅํ•œ ์•ˆ์ „์„ ๋‹ฌ์„ฑํ•˜๋„๋ก ๋„์™”์Šต๋‹ˆ๋‹ค.

    See More
  • ์ „๋ ฅ

    1970๋…„๋Œ€ ์ค‘๋ฐ˜, Yokogawa๋Š” EBS ์ „๊ธฐ ์ œ์–ด ์‹œ์Šคํ…œ (EBS Electric Control System)์˜ ์ถœ์‹œ์™€ ํ•จ๊ป˜ ์ „๋ ฅ ์‚ฌ์—…์— ์ง„์ถœํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ์ดํ›„๋กœ Yokogawa๋Š” ์ „ ์„ธ๊ณ„ ๊ณ ๊ฐ์—๊ฒŒ ์ตœ์ƒ์˜ ์„œ๋น„์Šค์™€ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ˆ ๊ณผ ์—ญ๋Ÿ‰์˜ ๊ฐœ๋ฐœ์„ ๊พธ์ค€ํžˆ ์ง€์†ํ•ด ์™”์Šต๋‹ˆ๋‹ค.

    Yokogawa๋Š” ์—ญ๋™์ ์ธ ๊ธ€๋กœ๋ฒŒ ์ „๋ ฅ ์‹œ์žฅ์—์„œ ๋”์šฑ ์ ๊ทน์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๊ธ€๋กœ๋ฒŒ ์ „๋ ฅ ์†”๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ๋ฅผ ์šด์˜ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด Yokogawa ๋‚ด์—์„œ ๋ณด๋‹ค ๊ธด๋ฐ€ํ•œ ํŒ€์›Œํฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์ ธ์„œ ๊ธ€๋กœ๋ฒŒ ๋ฆฌ์†Œ์Šค์™€ ์—…๊ณ„ ๋…ธํ•˜์šฐ๋ฅผ ํ•˜๋‚˜๋กœ ๋ชจ์•˜์Šต๋‹ˆ๋‹ค. Yokogawa์˜ ์ „๋ ฅ ์‚ฐ์—… ์ „๋ฌธ๊ฐ€๋“ค์€ ๊ฐ ๊ณ ๊ฐ์—๊ฒŒ ์ •๊ตํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ํ˜‘๋ ฅํ•ฉ๋‹ˆ๋‹ค.

    See More
  • ์ •์ˆ˜ ๋ฐ ํ•˜์ˆ˜ ์ฒ˜๋ฆฌ

    Yokogawa๋Š” ๋ณด๋‹ค ํšจ์œจ์ ์ธ ์‚ฌํšŒ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•˜์—ฌ ์—๋„ˆ์ง€ ์ตœ์ ํ™” ๊ธฐ์ˆ  ๊ฐœ๋ฐœ, ์˜จ์‹ค๊ฐ€์Šค ๊ฐ์ถ•, ์˜ค์—ผ ๋ฌผ์งˆ๋กœ๋ถ€ํ„ฐ ํ™˜๊ฒฝ์„ ๋ณดํ˜ธํ•˜๋Š” ๊ฒฌ๊ณ ํ•œ ์ œํ’ˆ ์ œ์ž‘ ๋“ฑ์„ ํ†ตํ•ด ์ง€์† ๊ฐ€๋Šฅํ•œ ์ˆ˜์ž์› ์ƒ์‚ฐ์„ ์œ„ํ•œ ์ œ์–ด ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Yokogawa์˜ ์ฒจ๋‹จ ๊ธฐ์ˆ ๊ณผ ํญ๋„“์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋…ธํ•˜์šฐ๋ฅผ ํ†ตํ•ด ๊ณ ๊ฐ๊ณผ ํ˜‘๋ ฅํ•˜์—ฌ ์‚ฌ์—…์„ ํ™œ์„ฑํ™”ํ•˜๊ณ  ํ”Œ๋žœํŠธ ์ˆ˜๋ช…์ฃผ๊ธฐ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋†’์€ ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ง€์† ๊ฐ€๋Šฅํ•œ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋‹น์‚ฌ์˜ ๊ธฐ์ˆ ๊ณผ ์ œํ’ˆ์€ ํ”Œ๋žœํŠธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์˜ค๋Š˜๋‚ ์˜ ์ˆ˜์ž์› ์‹œ์žฅ์—์„œ ๊ฒฝ์Ÿ์ ์œผ๋กœ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋ณด์žฅํ•˜๋ฉฐ ์šด์˜๋น„๋ฅผ ์ ˆ๊ฐํ•ฉ๋‹ˆ๋‹ค. Yokogawa๋Š” ์ง€์ž์ฒด ๋ฐ ๊ณต์—…์šฉ์ˆ˜ ์ฒ˜๋ฆฌ ์‹œ์žฅ์—์„œ ๊ด‘๋ฒ”์œ„ํ•œ ์ˆ˜์ฒ˜๋ฆฌ ์‘์šฉ ๋ถ„์•ผ๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.

    See More
  • ์ฒ ๊ฐ•

    ์ฒ ๊ฐ• ์‚ฐ์—…์—์„œ๋Š” ์ œํ’ˆ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ œ์กฐ ๋ฐ ์šด์˜ ๊ธฐ์ˆ ์˜ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ํ™˜๊ฒฝ ๋ฐ ์—๋„ˆ์ง€ ํšจ์œจ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ ๋˜ํ•œ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. Yokogawa๋Š” ๊ณ ๊ฐ์ด ์ด์ƒ์ ์ธ ํ”Œ๋žœํŠธ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋„๋ก ๋•๊ณ  ๋™๋ฐ˜ ์„ฑ์žฅ์„ ์œ„ํ•ด ๋ฐœ์ „ํ•ด ๋‚˜๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

    See More
  • ํ™”ํ•™

    ํ™”ํ•™ ํ”Œ๋žœํŠธ๋Š” ์—ฐ์† ๋ฐ Batch ์ƒ์‚ฐ ๊ณต์ •์— ์˜์กดํ•˜๋ฉฐ, ๊ฐ๊ฐ์€ ์ œ์–ด ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์—ฐ์† ๊ณต์ •์€ ์‹คํŒจํ•˜์ง€ ์•Š๊ณ  ์ƒ์‚ฐ ๋ผ์ธ์„ ์ค‘๋‹จ์‹œํ‚ค๋Š” ๊ฒฌ๊ณ ํ•˜๊ณ  ์•ˆ์ •์ ์ธ ์ œ์–ด ์‹œ์Šคํ…œ์„ ํ•„์š”๋กœํ•˜๋Š” ๋ฐ˜๋ฉด, Batch ๊ณต์ •์˜ ์ค‘์š”์„ฑ์€ ์ˆ˜์‹, ์ ˆ์ฐจ ๋ฐ ๊ณต์ •์„ ์กฐ์ •ํ•˜๋Š” ๋ฐ ์žˆ์–ด ํฐ ์œ ์—ฐ์„ฑ์„ ํ—ˆ์šฉํ•˜๋Š” ์ œ์–ด ์‹œ์Šคํ…œ์„ ๊ฐ–์ถ”๋Š” ๋ฐ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‘ ์ข…๋ฅ˜์˜ ์‹œ์Šคํ…œ ๋ชจ๋‘ ์ œํ’ˆ์˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ํ’ˆ์งˆ ๋‚ด์—ญ์—์„œ ๊ด€๋ฆฌ๋˜์–ด์•ผ ํ•˜๋ฉฐ ๋น„์ผ์ƒ์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. Yokogawa๋Š” ๊ด‘๋ฒ”์œ„ํ•œ ์ œํ’ˆ ํฌํŠธํด๋ฆฌ์˜ค, ์ˆ™๋ จ๋œ ์‹œ์Šคํ…œ ์—”์ง€๋‹ˆ์–ด ๋ฐ ๊ธ€๋กœ๋ฒŒ ์˜์—… ๋ฐ ์„œ๋น„์Šค ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ชจ๋“  ๊ณต์žฅ ๊ณต์ •์— ๋Œ€ํ•œ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

    See More

Related Products & Solutions

  • EJA110E

    EJA-E ์‹œ๋ฆฌ์ฆˆ ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ๋งˆ์šดํŠธ ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJA115E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ IFO ์กฐ๋ฆฝ์ด ๋ถ€์ฐฉ ๋œ ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJA118E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฆฌ๋ชจํŠธ ๋‹ค์ด์–ดํ”„๋žจ ์”ฐ ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJA120E

    EJA-E ์‹œ๋ฆฌ์ฆˆ ๊ธฐ๋ฐ˜์˜ ๋ฏธ์•• ์ธก์ •์šฉ์œผ๋กœ ์„ค๊ณ„๋œ ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJA130E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋งˆ์šดํŠธํ˜• ๊ณ ์••์šฉ ์ฐจ์•• ์ „์†ก๊ธฐ.
     

    See More
  • EJA210E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์•ก์ฒด ๋ ˆ๋ฒจ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•ด ์„ค๊ณ„๋œ ํ”Œ๋žœ์ง€ ์žฅ์ฐฉํ˜• ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJA310E

    EJA-E ์‹œ๋ฆฌ์ฆˆ ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ๋งˆ์šดํŠธ ํ˜•ํƒœ ์ ˆ๋Œ€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJA430E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJA438E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฆฌ๋ชจํŠธ ๋‹ค์ด์–ดํ”„๋žจ ์”ฐ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJA440E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ์••์šฉ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJA510E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ธ๋ผ์ธ ์ ˆ๋Œ€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJA530E

    EJA-E ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ธ๋ผ์ธ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX110A

    EJX-A ์‹œ๋ฆฌ์ฆˆ ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJX115A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ Integral Flow Orifice(IFO)๊ฐ€ ๋ถ€์ฐฉ๋œ ์ € ์œ ๋Ÿ‰ ์ „์†ก๊ธฐ.

    See More
  • EJX118A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฆฌ๋ชจํŠธ ๋‹ค์ด์–ดํ”„๋žจ ์”ฐ ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJX120A

    ๊ณ ์„ฑ๋Šฅ ๋ชจ๋ธ์ธ EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ์•• ์ธก์ •์— ๋งž๊ฒŒ ์„ค๊ณ„๋œ ์ „ํ†ต์ ์ธ ์žฅ์ฐฉํ˜• ์ฐจ์•• ํŠธ๋žœ์Šค๋ฏธํ„ฐ

    See More
  • EJX130A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ High Static ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJX210A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์•ก์ฒด ๋ ˆ๋ฒจ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•ด ์„ค๊ณ„๋œ ํ”Œ๋žœ์ง€ ์žฅ์ฐฉํ˜• ์ฐจ์•• ์ „์†ก๊ธฐ.

    See More
  • EJX310A

    EJX-A ์‹œ๋ฆฌ์ฆˆ ๊ธฐ๋ฐ˜์˜ ์ ˆ๋Œ€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX430A

    EJX-A ์‹œ๋ฆฌ์ฆˆ ๊ธฐ๋ฐ˜์˜ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX438A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฆฌ๋ชจํŠธ ๋‹ค์ด์–ดํ”„๋žจ ์”ฐ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX440A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ์••์šฉ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX510A

    ๊ณ ์„ฑ๋Šฅ ๋ชจ๋ธ์ธ EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ธ๋ผ์ธ ๋งˆ์šดํŠธ ์ ˆ๋Œ€ ์••๋ ฅ ์ „์†ก๊ธฐ

    See More
  • EJX530A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ธ๋ผ์ธ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX610A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ์„ฑ๋Šฅ ์ธ๋ผ์ธ ์ ˆ๋Œ€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX630A

    EJX-A ์‹œ๋ฆฌ์ฆˆ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ์„ฑ๋Šฅ ์ธ๋ผ์ธ ๊ฒŒ์ด์ง€ ์••๋ ฅ ์ „์†ก๊ธฐ.

    See More
  • EJX910A

    ์ด ์ „์†ก๊ธฐ๋Š” ์ฐจ์••, ์ •์•• ๋ฐ ๊ณต์ • ์˜จ๋„๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋†’์€ ์„ฑ๋Šฅ์˜ ์œ ๋Ÿ‰ ์ปดํ“จํ„ฐ์—์„œ ์ด ๊ฐ’์„ ์‚ฌ์šฉํ•˜์—ฌ ์™„๋ฒฝํ•˜๊ฒŒ ๋ณด์ • ๋œ ์งˆ๋Ÿ‰ ์œ ๋Ÿ‰์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

    See More
  • EJX930A

    ์ด ์ „์†ก๊ธฐ๋Š” ์ฐจ์••, ์ •์•• ๋ฐ ๊ณต์ • ์˜จ๋„๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋†’์€ ์„ฑ๋Šฅ์˜ ์œ ๋Ÿ‰ ์ปดํ“จํ„ฐ์—์„œ ์ด ๊ฐ’์„ ์‚ฌ์šฉํ•˜์—ฌ ์™„๋ฒฝํ•˜๊ฒŒ ๋ณด์ • ๋œ ์งˆ๋Ÿ‰ ์œ ๋Ÿ‰์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

    See More
  • EJXC40A (Digital Remote Sensor)

    ๋””์ง€ํ„ธ ๋ฆฌ๋ชจํŠธ ์„ผ์„œ (DRS) ์ „์†ก๊ธฐ๋Š” ์›๊ฒฉ ์œ„์น˜์—์„œ ๋งˆ์Šคํ„ฐ (๊ณ ์•• ์ธก)์™€ ์Šฌ๋ ˆ์ด๋ธŒ (์ €์•• ์ธก)์˜ ๋‘ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์—ฐ๊ฒฐํ•˜๊ณ  DRS ์ „์šฉ ํ†ต์‹  ์ผ€์ด๋ธ”์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ์••์„ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.

    See More
  • ๋‹ค์ด์–ดํ”„๋žจ ์”ฐ ์‹œ์Šคํ…œ(Diaphragm Seal System)

    ๋‹ค์ด์–ดํ”„๋žจ ์”ฐ ์‹œ์Šคํ…œ(Diaphragm Seal System)์€ ์•ก์ฒด ๋ ˆ๋ฒจ, ๋ฐ€๋„ ๋ฐ ์••๋ ฅ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์•ก์ฒด, ๊ฐ€์Šค ๋˜๋Š” ์ฆ๊ธฐ ์œ ๋Ÿ‰์„ ์ธก์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

    See More
  • ๋ฏธ์••

    ๋ฏธ์•• ์ „์†ก๊ธฐ๋Š” ๋งค์šฐ ๋‚ฎ์€ ์ •์•• ํ™˜๊ฒฝ์—์„œ ์ž‘์€ ์ฐจ์ด๋ฅผ ์ธก์ •ํ•˜๋„๋ก ์„ค๊ณ„๋œ ๋…ํŠนํ•œ ์œ ํ˜•์˜ ์ฐจ์•• ์ „์†ก๊ธฐ์ž…๋‹ˆ๋‹ค.

    See More
  • ์••๋ ฅ ์ „์†ก๊ธฐ

    Yokogawa ์••๋ ฅ ์ „์†ก๊ธฐ๋กœ ํ”„๋กœ์„ธ์Šค ์••๋ ฅ์„ ์ •ํ™•ํ•˜๊ณ  ์•ˆ์ •์ ์œผ๋กœ ์ธก์ •ํ•˜๋ฉด ์•ˆ์ „ํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ˆ˜์ต์„ฑ ์žˆ๋Š” ์ž‘์—…์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

    See More
  • ์•ก์ฒด ๋ ˆ๋ฒจ

    ์ •ํ™•ํ•œ ๋ ˆ๋ฒจ ์ˆ˜์น˜๋Š” ์•ˆ์ „ํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ˆ˜์ต์„ฑ์ด ์žˆ๋Š” ๊ณต์žฅ ์šด์˜์— ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ์•ก์ฒด ๋ ˆ๋ฒจ ์ „์†ก๊ธฐ๋Š” ์ฐจ์••์„ ์ธก์ •ํ•˜์—ฌ ์šฉ๊ธฐ์˜ ๋ ˆ๋ฒจ์„ ์ถ”๋ก ํ•ฉ๋‹ˆ๋‹ค.

    See More
  • ์ €์œ ๋Ÿ‰

    ๋ฒ ๋ฅด๋ˆ„์ด์˜ ๋ฐฉ์ •์‹์— ๋”ฐ๋ฅด๋ฉด ์••์ถ•๋œ ๊ณณ ์–‘๋‹จ์˜ ์••๋ ฅ ๊ฐ•ํ•˜๋Š” ์œ ์†์˜ ์ œ๊ณฑ์— ๋น„๋ก€ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ์ •์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์Šค๋งˆํŠธ ์ฐจ์•• ์ „์†ก๊ธฐ๊ฐ€ ์œ ๋Ÿ‰์„ ์ถ”์ • ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

    See More
  • ์ ˆ๋Œ€ ์••๋ ฅ (AP)

    ์ ˆ๋Œ€ ์••๋ ฅ ์ „์†ก๊ธฐ๋Š” ์ ˆ๋Œ€์••๊ณผ ์ƒ๋Œ€์ ์œผ๋กœ ์••๋ ฅ์„ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ์ ˆ๋Œ€ ์••๋ ฅ์€ ํ•ญ์ƒ ์–‘์˜ ๊ฐ’์ž…๋‹ˆ๋‹ค.

    See More
  • ์งˆ๋Ÿ‰ ์œ ๋Ÿ‰(Multivariable)

    ์‹œ์žฅ์—๋Š” ์งˆ๋Ÿ‰ ์œ ๋Ÿ‰์„ ์ธก์ •ํ•˜๋Š” ๋ช‡ ๊ฐ€์ง€ ๊ธฐ์ˆ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜๋‚˜๋Š” Multi-variable ์••๋ ฅ ์ „์†ก๊ธฐ์ž…๋‹ˆ๋‹ค.

    See More
  • ์ฐจ์•• (DP)

    ์ฐจ์•• (DP)์€ ๋‘ ์••๋ ฅ์˜ ์ฐจ์ด๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ์ฐจ์•• ์ „์†ก๊ธฐ๋Š” ์ €์•• ์ธก์„ ๊ธฐ์ค€์œผ๋กœ ๊ณ ์•• ์ธก๊ณผ ์••๋ ฅ์„ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ์žฅ๋น„์˜ ํฌํŠธ์—๋Š” High-side์™€ Low-side๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.

    See More

Top