Alarm Management – the strategy and process of striving for a well-managed operation

Chris Bamber, Yokogawa Middle East & Africa B.S.C.(c)

Introduction

Maintaining a safe and stable plant is the objective of everyone involved in the manufacturing process. As Peter Drucker once said, "A well-managed plant is silent and boring," but it actually takes a lot of work and effort to ensure this is the case.

Alarm management in the plant is not just another project that gets executed, but it is a philosophy, a way of life just like safety. We don't ever enter the process area without wearing PPE, so why work in an environment where there is no strategy for alarm handling? The alarm management system is one of the most important aspects of the plant and, like everything else, it must be maintained to meet the ever-changing needs of the plant.

In the early days of control systems, before the Distributed Control System (DCS) became commonplace, configuration of alarms used to be done through mechanical means with annunciators, light boxes, etc. Now with the advent of the DCS, the cost of making extra alarms available has significantly reduced as it can be mostly done by software. However, the operator still becomes overwhelmed with unnecessary alarms if the control system design is not approached correctly.

To fully understand the purpose of the alarm management system, we must look at the basic meaning of what an alarm actually is.

  • Anything that requires an operator to take an action to maintain safety and integrity of the process
  • An alarm is designed to prevent or mitigate process upsets and disturbances

Most alarm problems exist because the above criteria are not met. Understanding this definition is key to implementing a successful alarm management system. Alarm rationalization is a process of optimizing the alarm system for safe operation by reducing the number of alarms, reviewing their priority, and validating their alarm limits. By undertaking such steps, we help reduce the workload of the operators and promote a safer working environment within the plant, and when a plant upset does occur, more visibility is available on the alarms that really matter.

As highlighted previously, alarm management is not just a project that has a start and end date; it's a continuous cycle. Once the alarm system has been reviewed and improvements have been identified, we must check that controls are in place to ensure the alarm system remains functional. The key  is to ensure that the system is continuously monitored and any changes are fully documented. It is essential that any initiatives regarding alarm management have management support available, otherwise little improvement will be made in reducing the alarm counts and improving overall safety and improvement in the process.

Alarm Management

 

Seven Key Steps for Alarm Management

There are seven key steps for alarm management. Rationalization is one of those critical steps. 

  1. Alarm Philosophy Creation
    The alarm philosophy document is critical and, without it, there can be no way to implement a successful alarm management system. This document forms the basis of the overall design guidelines and will record all the expected KPIs that will be used to measure the success of the alarm management system.  The alarm philosophy should also cover the design of the interface to the operator so the graphics are clear and upsets are easy to spot etc.
  2. Alarm Performance Benchmarking
    To measure the success of any alarm management system, we must know how big the alarm problem is that is currently being experienced. How many alarms are being generated per day, how many alarms does the operator handle on an hourly basis, what are the deficiencies we currently have in the control system? These are all valid questions and benchmarking is the starting point.  Perhaps even performing a HAZOP-like study at this stage would be advantageous.
  3. Bad Actors Resolution
    Most alarms in the control system come from relatively few sources, and checking these and fixing them will make a big difference to the overall alarm count. Reviewing the Top-10 list helps to keeps it under control. Yokogawa's Exaquantum/ARA software can provide this list on a daily basis by email or, by using Yokogawa's Exaplog alarm/event analysis tool, we can manually extract the bad actors.
  4. Documentation/Rationalization
    The most important step of the alarm rationalization process is to ensure that each change is documented and the alarm changes comply with the alarm philosophy. Alarms can be eliminated completely by re-engineering in the DCS or adopting suppression techniques.  
  5. Audit/EnforcementAlarm Management Steps
    Once the rationalization is done, the hard work is not over! Without proper change management controls in place the alarm system will slip back into its old ways. Consider adopting a Management of Change (MOC) approach to the alarm system to ensure all changes are tacked. Exaquantum/AMD can also help by identifying changes to the alarm settings and, if required, the optimal settings can be enforced automatically.
  6. Real Time Alarm Management
    For day-to-day operations, we should adopt alarm management techniques that will support rather than hinder the operator by providing Alarm Shelving, state based alarming or other alarm suppression technologies.
  7. Control & Maintain Performance
    Continued compliance to the alarm philosophy is crucial by continuously monitoring the alarm KPIs and making any required changes through a MOC type procedure. Nominate an "alarm champion" that will oversee and manage day-to-day issues. Remember that alarm management is not a one step process.

 

Alarm Rationalization: Finding the Bad Actors

Before Alarm Rationalization TableA general approach of alarm management and the steps required to implement a successful alarm management strategy was addressed in Part 1. Now, we explore the concept of alarm rationalization. As discussed earlier, the best starting point is to look at how big of an alarm problem we actually have. We can also use this as a baseline to track progress for the future. The first item to address is our "bad actors." That is the alarms that are causing the most issues within the process. Eliminating the top ten of these alarms will make a big improvement in the overall alarm count in a short period of time.  The bad actors can be obtained easily by using Yokogawa's alarm/event analysis software tool, Exaplog, or its alarm reporting and analysis software, ExaquantumARA. These tools should be run and the results reviewed on a regular basis.  In Exaplog, a report can be manually run when needed, and in ARA, a report can be generated automatically and sent via email.  The bad actor list in the table on the left is an example of a plant before alarm rationalization was started.

The alarm counts for the first three tags in this list were exceptionally high and were all found to be caused by an input open (IOP) error, which in most cases is related to a communication issue in the field, a hardware issue with the transmitter itself, or possibly an incorrect alarm threshold setting.

In this case, all of the concerned transmitters were connected to a faulty fieldbus segment. Replacing a fieldbus component cleared the problem and suddenly there were no more alarms. This immediately made a big impact on the alarm count.

The following table can be used as a general reference for help in troubleshooting different alarm types in a Yokogawa CENTUM system.

Reference for Troubleshooting Alarms Table

Alarm by Condition

It is always best to remember that just because the alarm count is high for a particular tag, there may be a logical explanation for it, and the tag should not just be suppressed because it's a nuisance to the operators. This first stage of alarm rationalization is called "Fundamental Nuisance Alarm Reduction" (FNAR).

Running a report for the bad actors and displaying the condition is recommended, as it can be filtered for the different conditions, plant areas and even down to an individual unit.

Alarm by Condition

After looking at the bad actors we can also look at the "chattering alarms." The EEMUA#191 alarm standard specifies that a chattering alarm is a tag that goes into alarm and normal again more than five times in a 60-second period. In most cases, these chattering alarms could be caused by incorrect alarm limits.  As part of the rationalization, the chattering alarms should be looked at closely and the limits reviewed accordingly.

Familiarization with the EEMUA#191 guideline and the ISA18.2 standard are important to understanding alarm rationalization, alarm management and the key performance indicators. The EEMUA#191 guideline is a detailed specification of alarm management and goes down to the detail of providing guidance of how DCS mimic displays should look and what type of furniture to use in the control room to make the operators more comfortable during their shifts. All Yokogawa alarm management based products were initially based on the EEMUA#191 guideline and are being applied to the ISA18.2 standard.  In the ideal world, EEMUA#191 recommends no more than one alarm per operator every 10 minutes. That would be  quite an achievement and is a rare occurrence. A big difference can be made the bad actors list; to identify them, and eliminate them. Making the review of the bad actors list part of the daily activities is a work process well worth the effort. Otherwise, your effort will be wasted and soon those alarms will be coming back again!

Industries

  • Chemical

    Chemical plants rely on continuous and batch production processes, each posing different requirements for a control system. A continuous process calls for a robust and stable control system that will not fail and cause the shutdown of a production line, whereas the emphasis with a batch process is on having a control system that allows great flexibility in making adjustments to formulas, procedures, and the like. Both kinds of systems need to be managed in available quality history of product, and to be able to execute non-routine operations. With its extensive product portfolio, experienced systems engineers, and global sales and service network, Yokogawa has a solution for every plant process.

    See More
  • Offshore (FPSO FLNG & FSRU)

    Offshore exploration and production requires maximum uptime under harsh conditions. Manned and unmanned facilities need reliable integrated control and safety systems (ICSS) with advanced remote monitoring capabilities. Yokogawa has state-of-the-art technology and extensive experience in executing offshore projects of all sizes and automation levels of complexity.

    See More
  • Oil & Gas

    Yokogawa has a wealth of experience in every part of the oil and gas business, from offshore and onshore facilities to pipelines, terminals, and deepwater operations. We provide solutions that enhance safety, ensure accurate and reliable operation, and increase plant efficiency.

    See More
  • Oil & Gas Downstream

    The oil & gas downstream industry has been facing an increasing number of challenges in recent years. These include the changing characteristics of the feedstock to be processed, aging of process facilities and equipment, rising cost of energy, lack of skilled plant operators who can run a refinery safely and efficiently, and the ever-changing requirements from both the market and the customer.

    Over the years, Yokogawa has partnered with many downstream companies to provide industrial solutions focused on solving these challenges and problems. Yokogawa's VigilantPlant solutions have helped plant owners to achieve maximum profitability and sustainable safety within their plants.

    See More
  • Oil & Gas Midstream

    Yokogawa's innovative technology platforms and industry leading execution is well regarded in the global marketplace as a solutions partner pioneering the integration of technologies for all aspects of the oil & gas ecosystem from reservoir to enterprise. Proven solutions that include predicative business modeling, plant optimization and highly reliable automation platforms are assisting midstream operators to run their businesses at the optimal efficiencies. Yokogawa is helping clients to develop their automation roadmaps ensuring years of highly effective asset utilization and sustainability.

    See More
  • Onshore

    The onshore upstream industry faces ever higher demands and greater challenges with increasingly difficult and hostile environments in which it must operate.

    See More
  • Petrochemical

    • Diverse needs of petrochemical companies’
    • Improve quality, productivity 
    • Yokogawa tailor-made solutions, long and wide-ranging experience in this field
    See More
  • Pipeline

    The right pipeline control and instrumentation can make a huge difference in terms of performance and profitability. Yokogawa has dedicated technology that can optimize the performance of all elements of a pipeline solution, including compressors, pumps, valves, and intermediate storage and distribution facilities.

    See More
  • Refining

    In the ever-changing marketplace, refineries are seen not only as crude processing units but also as profit centers. At the same time, there is a keen awareness of the need for safety at such facilities. A total production solution that encompasses planning, scheduling, management, and control is required to achieve long-term goals for profitability, efficiency, and environmental protection. With years of expertise in the automation field, Yokogawa can bring you affordable total solutions for improved operability and a cleaner world.

    See More
  • Subsea

    Subsea production systems are located at various depths on the seafloor. As the hydrocarbon is extracted, it may be sent to an existing offshore production platform, or via tieback lines to onshore facilities for processing. Subsea systems extract and in some cases process the hydrocarbons before transportation.

    See More
  • Topsides

    • Topsides processing and handling on the production platform prep extracted hydrocarbons for transport
    • Yokogawa integrated control/monitoring maximize topsides operations productivity and availability
    See More
  • Upstream

    The upstream industry includes offshore and onshore activities including wellhead automation, fractionation, completion, and separation to recover and prepare underground or underwater crude oil and natural gas.

    As petroleum is brought to the surface, it must be separated prior to transport. Primary and secondary separation stages commonly distribute gas flow, water flow, and oil flow in three phase separation. Gas movement requires pipeline and can include a fractionation process in the upstream stage prior to movement. Liquids can be placed into a tanks or pipelines and sent for processing, requiring accurate level measurements.

    See More

Related Products & Solutions

×

Have Questions?

Contact a Yokogawa Expert to learn how we can help you solve your challenges.


Top