Life Science

Upcoming Events

  • Conference Dec 1 - 10, 2021
    Online

    2021 Cell Bio Virtual

    2021 Cell Bio Virtual is an online joint meeting of the American Society for Cell Biology (ASCB) and the European Molecular Biology Organization (EMBO) that focuses on cell biology as the fundamental basis of biology. Yokogawa Life Science-featured sessions include Super-Resolution & HCA Microscopy Options and SiLC-MS (Single Live Cell Mass Spectrometry) Analysis in the Context of Drug Discovery.

Early stage embryo

A portfolio of flexible solutions for the regenerative medicine, pharmaceutical research, and precision medicine industries.

Yokogawa’s high content analysis systems and dual spinning disk technologies are known for higher product quality, more individualized systems tuning, and better process control. From design to implementation and startup to continuous optimization, Yokogawa has the experience and technology to solve your greatest challenges.

  • Spinning Disk Confocal CSU

    Using a proprietary Microlens-Enhanced Dual Spinning Disk design, Yokogawa’s Confocal Scanner Units (CSUs) transform optical microscopes by enabling real-time live cell imaging.

    See More
  • Bioreactor

    Combining real-time monitoring with advanced process control, bioreactors automate lab-scale mammalian cell cultures, detecting viable cell densities and glucose and lactate concentrations with high accuracy.

    See More
  • Single-Cell Analysis Solution

    Equipped with a minimally-invasive nanopipette, our Single Cellome UnitTM is capable of injecting target substances while maintaining the positional information of individual cells.

    See More

Details

Yokogawa Life Science Twitter Yokogawa Life Science Facebook Yokogawa Life Science Linkedin Yokogawa Life Sciences YouTube

Principles of Spinning Disk Confocal

The most common conventional confocal microscopes use a single laser beam to scan a specimen, while the CSU scans the field of view with approximately 1,000 laser beams, by using microlens-enhanced Nipkow-disk scanning: in short, CSU can scan 1,000 times faster.

By using a disk containing microlens arrays in combination with the Nipkow disk, we have succeeded in dramatically improving the light efficiency and thus successfully made real-time confocal imaging of live cells possible.

The expanded and collimated laser beam illuminates the upper disk containing about 20,000 microlenses (microlens array disk). Each microlens focuses the laser beam onto its corresponding pinhole, thus, effectively increasing laser intensity through pinholes placed in the pinhole array disk (Nipkow disk).

With the microlens, backscattering of laser light at the surface of the pinhole disk can be significantly reduced, thus, dramatically increasing the signal to noise ratio (S/N) of confocal images.

About 1,000 laser beams passing through each of the pinholes fill the aperture of the objective lens, and are then focused on the focal plane. Fluorescence generated from the specimen is captured by the objective lens and focused back onto the pinhole disk, transmitted through the same holes to eliminate out-of-focus signals, deflected by the dichroic mirror located between microlens array disk and the Nipkow disk to split fluorescence signal from reflected laser, passed through emission filter and then focused into the image plane in the eyepiece or camera.

The microlens array disk and the Nipkow disk are physically fixed to each other and are rotated to scan the entire field of view at high speeds, thus, making it possible to view confocal fluorescent images in real-time through the eyepiece of the CSU head.

As compared to conventional single point scanning, multi beam scanning by the CSU requires a significantly low level of light intensity per unit area, which results in significantly reduced photo bleaching and phototoxicity in live cells.

Spinning Disk Confocal

microlens / fastsacnning / minimal photo bleach / high resolution

Microlens-enhanced Nipkow Disk Technology

Microlens-enhanced Nipkow Disk Technology

Comparison of scanning method

point scanning

Point Scanning
1 line scan time=1[ms]
1000 lines/image
Scan lines=1000 [lines]
1×1000=1000 [ms]

disk scanning

Disk Scanning by CSU
Rotation Speed=10000 [rpm]=41.7[rps]
30°Rotation/image
1÷( 41.7×30/360 )= 0.5 [ms]

 

 

August 20,2020

Discovering Potential Covid-19 Therapies using High Content Screening

Date: Wednesday August 26th 2020
Time: 12pm (EST) 9am (PST) 5pm (London)

Abstract:
In this webinar, Professor Jonny Sexton discusses a pipeline, developed in the Sexton lab, for the quantitative high-throughput image-based screening of SARS-CoV-2 infection to identify potential antiviral mechanisms and allow selection of appropriate drug combinations to treat COVID-19. This webinar presents evidence that morphological profiling can robustly identify new potential therapeutics against SARS-CoV-2 infection as well as drugs that potentially worsen COVID-19 outcomes.

Click Here for  Registration

June 5,2020

Sales release : High-throughput Cytological Discovery System CV8000 : 20x water immersion lens option was released.

 Click Here For More Info

March 18,2020

Sales release : Single-cell Analysis Solution Single Cellome Unit SU10

 Click Here For More Info

January 20,2020

Sales release : High Content Analysis Software CellPathfinder update and Deep learning option was released. 

Deep learning function succeeded in dramatically improving by recognizing patterns in images to identify what the images show.

Link to products High Content Analysis Software CellPathfinder
Find out more about Deep learning

January 15,2020

Society for Laboratory Automation and Screening (SLAS) 2020

January 25-29, 2020
Booth No. 1148

We will exhibit high content analysis system "CellVoyager CQ1".

Link to products
Confocal Quantitative Image Cytometer CQ1

-Poster-

1207-C:
A Live Cell High Content Assay for Cellular Lipid Droplets
January 28, 2:00-3:00 pm

Find out more about SLAS 2020

December 6,2019

Sales release : A flat-top beam shaper option CSU-W1 Uniformizer

 Click Here For More Info

November 18,2019

ASCB/EMBO 2019

December 8-10, 2019
Booth No. 300

We will exhibit Spinning disk confocal "CSU-W1 SoRa" and high content analysis system "CellVoyager CQ1".

Link to products
Super Resolution Confocal Scanner Unit : CSU-W1 SoRa
Confocal Scanner Unit : CSU-W1
Confocal Quantitative Image Cytometer CQ1

-Tech talks-

December 9, 3:00-4:00 pm – Theater 2, Learning Center

Uniformizer, a new flat-top beam shaper for CSU-W1 & Introduction to new approach for single cell analysis

Presenter: Naoki Ando: Product specialist of CSU, Masahiro Kajita: Project manager of “Single Cellome”

Yokogawa continues to make improvements to provide the best products for biology researchers. So far, CSU has fulfilled the researchers' wish to take images fast, wide, clear and in super-resolution. This time, we will introduce the new option “Uniformizer” of our product “CSU-W1”. This unit uniformizes the laser illumination and enables quantitative imaging. This provides a large seamless montage image between each field. Furthermore, Yokogawa also takes new challenge for the next field, which is single cell analysis. As a trial, it had prototyped automated single cell sampling system, and it has possible to investigate the molecular characterization of each single cell. This tech talk will introduce 1) ”Uniformizer” and 2) new approach for single cell analysis, which could perform with confocal microscopy.

Find out more about ASCB/EMBO 2019

October 3,2019

SLAS 2019 Advanced 3D Human Models and High-Content Analysis Symposium

October 21-12, 2019
The Francis Crick Institute, London, United Kingdom
Booth No. 5

We will exhibit high content analysis system "CellVoyager CQ1".

Link to informations
Confocal Quantitative Image Cytometer CellVoyager CQ1

Find out more about SLAS 2019 Advanced 3D Human Models and High-Content Analysis Symposium

April 8,2019

FOM 2019

April 14-17, 2019
Queen Elizabeth II Center
Booth No. 42

We will exhibit Spinning disk confocal "CSU-W1 SoRa".

Link to products
Super Resolution Confocal Scanner Unit : CSU-W1 SoRa
Confocal Scanner Unit : CSU-W1

Find out more about FOM 2019

January 16,2019

SLAS 2019

February 4-6, 2019
Walter E. Washington Convention Center
Booth No. 214

We will exhibit high content analysis system "CellVoyager".

Link to products
CellVoyagerTMCV8000 High-throughput Cytological Discovery System
Confocal Quantitative Image Cytometer CQ1
High Content Analysis Software CellPathfinder

*Poster presentation is planned. Details will be posted as soon as it is decided.

Find out more about SLAS 2019

October 24,2018

ASCB/EMBO 2018

December 9-11, 2018
Booth No. 845

-Tech talks-

December 9, 3:00-4:00 pm – Theater 2, Learning Center

Super Resolution Confocal Scanner Unit CSU-W1 Sora

Presenter: Takuya Azuma: Chief designer of CSU-W1 Sora,
Yoshitaka Sekizawa: Product manager of CSU-W1 Sora

Yokogawa will introduce our brand-new product “CSU-W1 SoRa.” This is a spinning disk based super resolution confocal scanner unit. In this talk, we will introduce features and principles of this product and we will show beautiful image samples taken by “CSU-W1 SoRa”. Features of “CSU-W1 SoRa”: 1) XY resolution of approx. 120nm. XY resolution has been improved by approximately 1.4x the optical limit based on spinning-disk confocal technology. Furthermore, a final resolution approximately twice the optical limit is realized through deconvolution. 2) Ideal for super-resolution live cell imaging. Just like the CSU, high-speed real time imaging can be performed with super-resolution. In addition, live cell imaging is possible, reducing bleaching and phototoxicity. 3) The CSU is easy to use. Super-resolution images can be observed in real time without any specific preparation of sample. Deep position observation is made possible through optical sectioning based on confocal technology. 4) Upgradable from CSU-W1. If you already have CSU-W1, you can add SoRa disk.

Find out more about ASCB/EMBO 2018

September 14,2018

Sales release : High Content Analysis Software CellPathfinder

 Click Here For More Info

July 27,2018

Sales release : High-speed Super resolution Confocal Scanner CSU-W1 SoRa

 Click Here For More Info

June 11,2018

2018 SLAS Europe

March 01,2018

Sales release : High Content Data Management System CellLibrarian

 Click Here For More Info

December 29,2017

SLAS 2018

February 3-7, 2018

December 29,2017 Sales news : The Discontinuation of CellVoyagerTM CV7000S High-throughput Cytological Discovery System
September 05,2017

Sales release : CellVoyagerTMCV8000 High-throughput Cytological Discovery System

 Click Here For More Info

January 19,2017

SLAS High-Content Screening Conference 2017

Find out more about SLAS High-Content Screening Conference 2017

April 04,2016

Poster presentation in 3D Cell Culture 2016, 19-21 April 2016, Konzerthaus Freiburg/Germany

Yokogawa Electric Corporation will present data obtained by our confocal image cytometer CQ1 in “3D Cell Culture 2016: How close to ‘in vivo’ can we get? Models, Application & Translation”. The poster will show the results of 3D live cell imaging and analysis of the migration and the network formation of HUVEC cells in a multilayered cell sheet. The results demonstrate that CQ1 is an excellent research tool in the field such as regenerative medicine and drug discovery screening.

*Data were provided from BioProcess Systems Engineering Lab., Dept.Biotech., Grad. Sch. Eng., Osaka University.

Poster presentation in 3D Cell Culture 2016

February 10,2016 Yokogawa Concludes Distribution Agreement with Optec, LLC for Sale of Confocal Quantitative Image Cytometer CQ1 at the markets of OPTEC activity
October 01,2015 Sales release : Label-free Morphological Analysis Software CellActivision

 

Resources

Overview:

Visualizing the cell behavioral basis of epithelial morphogenesis and epithelial cancer progression

Overview:

Faster, Deeper, and Clearer -in vivo molecular imaging technology-

Overview:

Discovering the Basic Principles of Life through the Live Imaging of C. elegans

Overview:

Closing in on Neuronal Circuit Dynamics through High-speed, fMCI.

Overview:

New Era in Manmmalian Genetics Research: To utilize the same embryo after long-time 3D observation!

Overview:

Getting Closer to “Plant Cell World”with High-speed Live Imaging and Image Information Processing.

Overview:

Use of the spinning disk confocal at the Harvard Medical School microscopy core.

Overview:

Spinning Disk Confocal Microscopy for Quantitative Imaging and Multi-Point Fluorescence Fluctuation Spectroscopy.

Overview:

On-site manipulation of protein activities: Understanding intricate cell signaling pathways.

Overview:

A critical requirement in biopharmaceutical development is the integration and automation of process equipment and analytical instruments used in the laboratory. Bioprocess labs with multiple lab-scale bioreactors often execute cultivation experiments in parallel for research or process development purposes.

As part of a collaboration between Securecell (Zurich, SW) and Yokogawa Life Science (Tokyo, Japan), this application note demonstrates the effective use of the Lucullus® Process Information Management System (Lucullus®) to assist in the control of three Advanced Control Bioreactor Systems (BR1000) to study glucose utilization of CHO cells for optimal monoclonal antibody productivity.

Industries:
Application Note
Overview:

Comparison between CSU and conventional LSM in 4D movies.

Application Note
Application Note
Overview:

To investigate interactive dynamics of the intracellular structures and organelles in the stomatal movement through live imaging technique, a CSU system was used to capture 3-dimensional images (XYZN) and time-laps images (XYT) of guard cells.

Application Note
Overview:

Fluorescent ubiquitination-based cell cycle indicator (Fucci) is a set of fluorescent probes which enables the visualization of cell cycle progression in living cells.

Industries:
Application Note
Overview:

Cell stage categorized using FucciTime lapse imaging of Fucci-added Hela cells was conducted over 48 hrs at 1 hr intervals. Gating was performed based on the mean intensities of 488 nm and 561 nm for each cell. They were categorized into four stages, and the cell count for each was calculated.

Industries:
Application Note
Overview:

The CQ1 confocal image acquisition mechanism with the distinctive CSU® unit has a function to sequentially acquire fine cell images along the Z-axis and capture information from the entire thickness of
cells which include heterogenic populations of various cell cycle stages. In addition, saved digital images can be useful for precise observation and analysis of spatial distribution of intracellular molecules.
The CQ1 capability to seamlessly analyze images and obtain data for things such as cell population statistics to individual cell morphology will provide benefits for both basic research and drug discovery
targetingM-cell cycle phase.

Application Note
Overview:

List of Selected Publications : CSU-W1

Overview:

List of Selected Publications : CQ1

Overview:

List of Selected Publications : CSU-X1

Overview:

The CV8000 nuclear translocation analysis software enables the analysis of changes in the localization of signal molecules that transfer between cytoplasm and nuclei, such as proteins. The following is an example of the translocation analysis of NFκB, a transcription factor.

Overview:

List of Selected Publications : CV8000, CV7000, CV6000

Overview:

Applications: Colony Formation, Scratch Wound, Cytotoxicity, Neurite Outgrowth, Co-culture Analysis, Cell Tracking

Industries:
Overview:

Faster, Brighter, and More Versatile Confocal Scanner Unit

Industries:
Overview:

Caustic soda is an important basic material in the chemical industry and is mainly produced by the electrolysis of soda. In the electrolysis process to make concentrated caustic soda, the DM8 Liquid Density Meter ensures high product quality through accurate measurement of liquid density.

Application Note
Overview:

Welcome to The New World of High Content Analysis
High-throughput Cytological Discovery System

Yokogawa Technical Report
2.2 MB
Overview:

This "Tutorial" provides overview of this software, from installation through data analysis.

Overview:

In this tutorial, a method for analyzing ramified structure, using CellPathfinder, for the analysis of the vascular endothelial cell angiogenesis function will be explained.

Overview:

In this tutorial, a method for analyzing ramified structure, using CellPathfinder, for the analysis of the vascular endothelial cell angiogenesis function will be explained.

Overview:

In this tutorial, spheroid diameter and cell (nuclei) count within the spheroid will be analyzed.

Overview:

In this tutorial, we will learn how to perform time-lapse analysis of objects with little movement using CellPathfinder, through calcium imaging of iPS cell-derived cardiomyocytes.

Overview:

In this tutorial, we will identify the cell cycles G1-phase, G2/M-phase, etc. using the intranuclear DNA content.

Overview:

In this tutorial, image analysis of collapsing stress fibers will be performed, and concentration-dependence curves will be drawn for quantitative evaluation.

Overview:

In this tutorial, we will observe the change in number and length of neurites due to nerve growth factor (NGF) stimulation in PC12 cells.

Overview:

In this tutorial, intranuclear and intracytoplasmic NFκB will be measured and their ratios calculated, and a dose-response curve will be created.

Overview:

In this tutorial, we will learn how to perform cell tracking with CellPathfinder through the analysis of test images.

Overview:

In this tutorial, using images of zebrafish whose blood vessels are labeled with EGFP, tiling of the images and recognition of blood vessels within an arbitrary region will be explained.

The CSU-X1’s dichroic mirror measures at 13mm × 15mm × 0.5mm -0.20/-.020mm, t 0.500+/-0.02mm. Click here to view additional information on the CSU-X1 Confocal Scanner Unit. ...
The CSU-W1’s selectable pinhole size is shown as a measurement of diameter. You can learn more about the CSU-W1 Uniformizer by visiting here. ...
You can find the Yokogawa Life Science technical brochure in our online Library by clicking here. To view additional resources, click here. ...
Diagrams of the CSU-W1 Uniformizer and the CSU-X1 Confocal Scanner Unit can be found on page 14 of the General Specifications Guide. To view them, click here.
The CSU-X1’s maximum acquisition speed is 2000 fps. Learn more by clicking here.
The CQ1 has a top opening for robotic integration and is remote control mode-compatible with many robotic arms and grippers. To learn more, click here. ...
To download CellPathfinder, click here.
The CQ1 has a remote operation mode that allows third-party robotic scheduling software to open and load plates and run protocols for measurement and analysis. To learn more, click here. ...
The additional computer workstation that comes with the CQ1 enables simultaneous acquisition and analysis of data. To learn more, click here.   ...
For neurite growth, consider using either the 20x or 40x objective lens for maximum lateral resolution. To learn more, click here. ...
The CSU-W1 can be upgraded with a CSU-W1 SoRa, allowing you to switch between regular confocal observation and super-resolution observation. To learn more about the CSU-W1 SoRa click here . ...
You can request a CQ1 hardware or software manual by emailing Yokogawa Life Science at YCA-LifeScienceCustomerCare@yokogawa.com.
The utility box is an accessory unit that provides power and lasers to the CQ1. To learn more, click here.
The numerical apertures of the CV8000 objectives are 2X 0.08NA 4X 0.16NA 10X 0.40NA 10X PH 0.30NA 20X 0.75NA 20X LWD 0.45NA 20X PH 0.45NA 20XWI 1.0NA 40X 0.95NA 40X WI 1.0NA 60X WI 1.2NA To learn more, click here. ...
The wavelengths for the emission filters that come with the CV8000 are listed below. Additionally, you may custom order additional emission filters for specific needs. To learn more, click here. 445/45 525/50 600/37 676/29 488/568 (Dual Band F...
Each CSU-W1 Confocal Scanner Unit is outfitted with the 25 µm and 50 µm pinhole options to allow for higher confocality as needed. To learn more, click here. ...

Downloads

Videos

Overview:

Fast, gentle, and clear - live-cell imaging. Yokogawa's unique scanning method minimizes damage to living cells and organisms and even can capture faint/fast life phenomena. 

More than 2,500+ units scanning units sold worldwide. This fast, reliable, and accurate technology has been leading cutting-edge research and supporting researchers around the world for more than two decades.

More information: https://www.yokogawa.com/us/solutions/products-platforms/life-science/spinning-disk-confocal/

#confocal #microlens #microscope #CSU #Yokogawa #livecell

Overview:

Yokogawa's CQ1 open platform integrates seamlessly with Advanced Solutions BioAssemblyBot® 400. With laboratory automation becoming a standard in research, Yokogawa's high content confocal system's ability to work with robots like Advanced Solutions' BioAssemblyBot® 400 is essential to advancing laboratory automation.

Overview:

3D imaging experts from Yokogawa and Insphero have come together to provide helpful tips and tricks on acquiring the best 3D spheroid and organoid imaging. This webinar focuses on sample preparation, imaging, and analysis for both fixed and live cells in High Content Screening assays. The experts also discuss automated tools that can help researchers understand the large volume of data in these High Content Imaging Analysis Systems.

Overview:

In this webinar, Professor Jonny Sexton discusses a pipeline, developed in the Sexton lab, for the quantitative high-throughput image-based screening of SARS-CoV-2 infection to identify potential antiviral mechanisms and allow selection of appropriate drug combinations to treat COVID-19. This webinar presents evidence that morphological profiling can robustly identify new potential therapeutics against SARS-CoV-2 infection as well as drugs that potentially worsen COVID-19 outcomes.

Overview:

Visualizing the complex spatiotemporal dynamics of human stem cells as they proliferate and make cell fate decisions is key to improving our understanding of how to robustly engineer differentiated tissues for therapeutic applications.

In this webinar, Dr. Rafael Carazo Salas will describe multicolor, multiday high-content microscopy pipelines that his group has recently developed to visualize the dynamical cell fate changes of human Pluripotent Stem Cells (hPSCs).

Key Topics:

  • Visualizing how human Pluripotent Stem Cells (hPSCs) proliferate and undergo early differentiation in vitro, by high content microscopy
  • Learning about experimental and computational pipelines that enable monitoring single-cell fate dynamics
  • Learning about novel “live” reporters of hPSC cell fate

Speaker
Rafael Carazo Salas, PhD
Professor, School of Cellular and Molecular Medicine
University of Bristol

Overview:

Dr. Sexton discusses high content screening for phenotypic-based drug discovery and development using Yokogawa technologies. This webinar presents the methodology behind acquiring good images that are able to leverage the three-dimensionality of different cell systems. His assays include 3D models such as organoids and spheroids.

In this webinar, you will discover:

  • How to identify when 2D or 3D methods are required to achieve desired results.
  • How to leverage your High Content Imaging Systems to get optimal signals and backgrounds.
  • Techniques that are used to improve cell observation yield and statistical distributions of morphological features.

News

Looking for more information on our people, technology and solutions?

Contact Us

Top